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Abstract

This paper examines the impact of real-time uncertainty on the superior performance of
mean-variance conditional asset allocation documented in the literature. Real-time uncer-
tainty is modeled by implementing a large number of conditional strategies that an investor
could reasonably choose. This analysis based on 12 international equity markets between
January 1990 and September 2004 reveals that the performance of conditional asset allo-
cation is currently overstated. Consistently across different levels of transaction costs and
investor’s risk aversion, we mainly show that (i) conditional strategies present important
downside risk (ii) conditional strategies are dominated by buy and hold strategies (iii) per-
formance is very sensitive to minor specification changes.

∗FAME and HEC-University of Geneva, Boulevard du Pont d’Arve 40, 1211 Geneva 4, Switzerland.
Tel:+41223798141. Fax:+41223798104. E-mail:barras@hec.unige.ch. I am grateful to Dusan Isakov, Olivier
Scaillet, René Stulz, Fabien Couderc and Frédéric Sonney for their helpful comments.

1



1 Introduction

A significant part of academic research initiated in the mid 80’s has been devoted to the anal-
ysis of variables that may have some predictive power on the expected returns of various asset
classes and more specifically equity indices. These widely reported results have conducted both
academics and practitioners to implement strategies based on this predictability in order to
beat the market and other unconditional models using historical data. While the mere exis-
tence of a statistical relation between returns and lagged instruments is still hotly debated by
academics (e.g. Bossaerts and Hillion, 1999; Stambaugh, 1999; Ferson, Sarkissian and Simin,
2003), conditional allocations based on mean-variance optimization provide an intuitive way to
assess the economic importance of return predictability. This is simply done by evaluating the
performance of these strategies from the view point of an uninformed investor considering that
the multivariate asset return distribution is unpredictable. It turns out that most studies imple-
menting these allocations conclude that they outperform passive or unconditional strategies1.
As an illustration, Solnik (1993) considers stock and bond indices of developed countries and
uses a model based on local predictive variables such as the dividend yield and the short term
interest rate. Harvey (1994) and Cavaglia & al. (1997) add emerging markets to the analysis
and select global predictive instruments related to currency rates or the MSCI world index. In a
domestic setting, Klemkosky and Bharati (1995) introduce transaction costs for the US market
and use a selection criterion to choose the optimal number of variables, while Robertsson (2000)
measures the performance of this approach applied to the Swedish market.

However, we think that the positive performance documented so far in the literature is largely
called into question because of a lack of realism. First, the diversity encountered in all of these
studies clearly shows that conditional approaches can be implemented with many different pre-
dictive variables, estimation window lengths or financial assets. This diversity due to the lack of
solid theoretical grounds behind these choices and especially behind the notion of predicability
leads most reseachers to focus on exogenously defined specifications (Cooper and Gulen, 2004).
As a result, a given specification of conditional asset allocation may have obtained outstanding
out-of-sample results but since this specification is unknown ex-ante, one can reasonably wonder
if an investor would have been able to replicate it in real-time. Second, none of them jointly
explain three essential aspects underlying the concrete application of mean-variance conditional
asset allocation. The first one consists in defining a consistent way to implement these tactical
approaches characterized by substantial portfolio turnover. The second concerns the perfor-
mance sensitivity of both conditional and unconditional asset allocations to different levels of
transaction costs. Finally, since different risk aversion coefficients greatly modify the bets taken
by a given investor (Chopra and Ziemba, 1993), variations of this parameter may greatly impact
the results of the various strategies.

1To our knowledge, the only study finding that mean-variance conditional methods yield disappointing results
is proposed by Handa and Tiwari (2002). Other papers come to the same conclusion by using conditional
asset pricing models. But the restrictive structure imposed by these models greatly reduces performance (e.g.
Hamelink, 2000; Fletcher & Hillier, 2003).
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The contributions of this paper to the existing literature are threefold. First, we propose a
new assessment of the performance generated by conditional asset allocation by taking into ac-
count the real-time uncertainty faced by an investor willing to implement this strategy. Since it
is not sufficient to only examine a few exogenous specifications, we rather consider a large set of
168 conditional strategies among which a real-time investor could reasonably make his choice.
Each strategy varies according to three sets of exogenous specifications, which are the predic-
tive variables, the estimation window length and the portfolio selection constraints. Then, the
overall performance of conditional asset allocation is measured against 24 unconditional asset
allocations as well as 3 buy and hold strategies. Second, this paper models a complete framework
which allows a practical and concrete implementation of conditional asset allocation. Indeed,
we explicitly show how to use developed stock market index futures contracts in order to reduce
transaction costs and make the excess return of the conditional asset allocation independent of
the investor’s country of origin. Moreover, a broad analysis of the performance sensitivity of
conditional asset allocation to both changes in the level of transaction costs and investor’s risk
aversion is provided. Finally, we propose a rationale for the use of the Cornell measure and the
Sharpe ratio to assess the performance of conditional asset allocation and propose an innovative
use of the bootstrap method developed by White (2000) to obtain significance p-values related
to these two performance measures.

The results of our empirical tests applied to 12 developed market equity indices between Jan-
uary 1990 and September 2004 clearly indicate that the economic gains generated by conditional
asset allocation are currently overstated and imply that various conditional strategies that could
be reasonably chosen by a real-time investor lead to important capital losses. This strong con-
clusion, which is consistent across different levels of investor’s risk aversion, is based on three
different procedures which highlight important limitations of conditional asset allocation. First,
the comparative analysis of conditional and unconditional asset allocations indicates that the
standard deviation of conditional strategies is always significantly higher (at the 10% level)
whereas its excess mean is not significantly superior except when the risk aversion coefficient
is low. Moreover, the final wealth distribution faced by an investor who randomly picks up
one of the 168 possible conditional strategies is prone to substantial downside risk. Second,
performance analysis shows that the percentage of strategies having a positive Cornell measure
is very low, implying that none of the conditional strategies are based on superior information.
Examination of the Sharpe ratio reveals that conditional asset allocation is able to outperform
unconditional asset allocation but is beaten by buy and hold strategies especially when transac-
tion costs are accounted for. Besides, the important performance variation across the different
sets of exogenous specifications suggests that modelling choices greatly affect the profits gener-
ated by conditional strategies. Third, we prove that the best conditional models do not share
common characteristics that could be detected ex-ante and are very sensitive to minor specifi-
cation changes, thus confirming the important impact of real-time uncertainty.
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The remainder of the paper is as follows. The next section defines the conditional as well
as the unconditional asset allocations and explains how they can be implemented in concrete
terms. Section 3 defines the three sets of exogenous specifications characterizing real-time un-
certainty. The following section describes the investment universe and the empirical modelling
of the various predictive models, estimation window lenghts and portfolio constraints. Section
5 contains a comparative analysis of conditional and unconditional strategies. Section 6 exam-
ines performance measures of all conditional strategies based on the Cornell measure and the
Sharpe ratio. Section 7 investigates the sensitivity of the best conditional strategies to small
specification changes and the final section concludes.

2 Description of the Conditional and Unconditional Asset Al-
location

2.1 Conditional asset allocation

2.1.1 Implementation

Let us assume that an investor forms his portfolio from a universe of N risky assets and a riskless
asset with constant return rf . At the beginning of each period, the investor receives predictive
information about the distribution of asset returns for the next period. If we denote by It the
investor’s information set, the excess return of the ith risky asset erit+1 (i = 1, ..., N) over the
riskfree rate between t and t+ 1 may be written as:

erit+1 = E (erit+1| It) + eεit+1 = eπit + eεit+1 (1)

where eπit represents the conditional expected excess return with respect to It and eεit+1 is the
unpredictable residual term. Following the literature, the portfolio is rebalanced at each time
t (t = 1, ..., T ) according to the two following principles. First, the investor is myopic as he
only considers the return distribution between t and t + 1 to compute the portfolio weights.
Second, these weights are defined by the mean-variance criterion applied to the first and second
conditional moments. After inserting the constraint that the weights sum up to one directly in
the optimization function, the investor with a risk aversion coefficient A maximizes the following
mean-variance trade-off at each time t (t = 1, ..., T ):

maxE (erpt+1| It)− 1
2
A · V ar (erpt+1| It)

⇒ max
wt

w0tΠt −
1

2
A · w0tΣtwt (2)

where wt represents the N×1 vector of risky asset weights set at time t, Πt the N×1 conditional
expected excess return vector and Σt the N×N conditional covariance matrix of excess returns.
The modelling of the conditional covariance matrix is based on the following assumption:
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Assumption 1 The conditional covariance matrix is constant, i.e. Σt = Σ.

This assumption is commonly made because the dynamics of the second moment is difficult
to capture as the number of assets increases (for further discussion see Solnik, 1993; Harvey,
1994). The validity of this assumption is an empirical matter which depends on the type of
assets and the time horizon chosen by the investor2.

Since Σ is supposed to be constant, the presence of superior information is only character-
ized by time-variation of the first moment of the multivariate excess return distribution. The
general estimation procedure of eπit for each asset i (i = 1, ..., N) is based on the following linear
specification estimated by OLS technique:

erit+1 = bαi + KX
k=1

bφik · eZkt + eξit+1 (3)

where eZkt (k = 1, ...,K) represent selected predictive variables known at time t and eξit+1 the
regression residual. The coefficients bαi and bφik (k = 1, ...,K) estimated up to time t − 1 are
used together with the value of the predictive variables at time t to obtain an out-of-sample
prediction for the ith asset excess return between t and t+1. Each of these forecasts are stacked
in a N × 1 vector, thus forming an estimator of eΠt. Moreover, the estimator of the conditional
covariance matrix Σ is simply based on the empirical variances and covariances of the country
regression residuals eξit+1 (i = 1, ..., N) .
2.1.2 Return computation

Previous studies confirm the important level of turnover and induced transaction costs gener-
ated by conditional asset allocation. In order to mitigate this drawback, it is assumed that
the international conditional strategies considered in this paper are implemented by means of
equity index futures contracts. Using futures implies that all positions must be rolled over at
each rebalancing date but transaction costs are greatly reduced compared to the ones charged in
the equity market. As an illustration, the one-way cost estimates for developed equity markets
usually range between 30 and 50 basis points relative to the transaction value (Solnik, 1999)
whereas cost estimates in index futures markets documented by Sutcliffe (1993) are ten times
lower.

To understand how the excess return of the conditional asset allocation between t and t+ 1 is
computed consider an example where an investor is willing to invest in a foreign stock market.

2The empirical part of the paper is based on developed market equity indices over a monthly horizon. In this
case, we show later that this assumption is reasonable. It would certainly not be the case if more volatile assets
such as emerging markets were considered over a shorter time horizon. But it is worth noting that covariance
misspecification has a far lesser impact on the investor utility than the one related to the expected return vector
(Chopra and Ziemba, 1993).
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It is assumed that there is no opportunity cost associated with the initial margin3 and that the
expiration date of the futures contract corresponds to the rebalancing interval chosen by the
investor. Let us denote by P f

t the price at time t of the foreign stock index expressed in foreign
currency f and by Sft the price at time t of one foreign currency f in terms of the investor’s
domestic currency. Instead of buying the securities forming the index, the investor can choose
to be long one stock index futures contract and invest the initial amount of money Sft · P f

t in
the domestic riskless asset. Since the excess return of the domestic riskless asset is equal to
zero, the excess return of the portfolio only depends on the stock index futures return:

erpt+1 = eSft+1 ³ eP f
t+1 − F f

t,t+1

´
Sft · P f

t

= (1 + esft+1)³ eRf
t+1 − rfft

´
≈ erft+1 (4)

where F f
t,t+1denotes the stock index futures price (in foreign currency) defined at time t. The

terms rfft and esft+1 respectively stand for the foreign riskfree rate set at time t and the currency
rate of return between t and t+1. Moreover, eRf

t+1 and erft+1are the stock index total return and
excess return (both expressed in foreign currency) between t and t + 1. The simplification

proposed in Equation (4) implies that the cross-product term esft+1 · ³ eRf
t+1 − rfft

´
is neglected.

This hypothesis is very convenient since the excess return of each market is independent of the
investor’s country of origin and is equal to erft+1. Therefore, it is unnecessary to both adopt the
point of view of an investor located in a specific country and to model forecasts of the currency
component, which is particularly difficult to predict accurately (Solnik, 1999).

2.2 Unconditional asset allocation

2.2.1 Implementation

A natural benchmark to assess the performance of conditional asset allocation is to compare it
with an unconditional asset allocation based on the assumption that the investor does not receive
any predictive information. As a result, the only difference with the conditional approach lies
in the fact that the myopic mean-variance optimization is based on the unconditional moments.
After inserting the constraint that the weights sum up to one directly in the optimization
function, the investor with a risk aversion coefficient A maximizes the following mean-variance
trade-off at each time t (t = 1, ..., T ):

maxE (erpt+1)− 1
2
A · V ar (erpt+1)

⇒ max
w

w0µ− 1
2
A ·w0V w (5)

3 In the worst case where the initial margin does not yield any income, the effect on the portfolio return is
weak since in developed markets the initial deposit generally ranges between 5 and 7% of the principal value of
the index futures contract.
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where w is the N × 1 vector of risky asset weights, µ the N × 1 unconditional expected excess
return vector and V the N ×N unconditional covariance matrix of excess returns. In order to
implement this unconditional approach, µ and V are simply replaced by the empirical first and
second moments computed with past data.

2.2.2 Return computation

Since the uninformed investor does not perceive any time-variation of the asset return distri-
bution, the portfolio is not heavily rebalanced and the turnover is thus low. For this reason, a
direct investment in stocks is more appropriate. Considering again the situation described above
where an investor wants to invest in a foreign stock market, we assume that he simply buys the
securities forming the index in the appropriate proportions. In order to obtain fair comparisons
with conditional methods from which the currency part has been removed, the unconditional
strategies have to be hedged against currency risk with currency futures contracts. Using the
covered interest rate parity and neglecting the cross-product esft+1 · ³ eRf

t+1

´
, the excess return

of this portfolio is equal to erft+1 similarly to Equation (4). As a result, the excess return of the
unconditional asset allocation is also independent of the investor’s country of origin.

3 Exogenous Specification and Real-Time Uncertainty

As it is stressed by Cooper and Gulen (2004), the vast majority of researchers analysing strate-
gies based on asset return predictability specify the portfolio selection process in an exogenous
way. This exoenous specification covers different aspects: the set of predictive variables, the
estimation window length, the trading rule or the period during which the strategies are im-
plemented. Of course, some of these choices can be defended with plausible arguments. For
instance, it can be argued that the trading rule based on the mean-variance framework permits
to take advantage of predictability while keeping the intuitive results of this well-known opti-
mization technique. Another example applies to the choice of the asset universe: an investor
may want to discard emerging countries in order to avoid the specific risks of these markets.
Unfortunately, these arguments are rather seldom. The lack of theoretical basis to justify most
of the modelling choices casts doubt on the performance robustness of the conditional strategies
as the most performing models remain unknown ex-ante. In order to understand the role of
real-time uncertainty in the performance of conditional asset allocation, we explicitly model
three sets of exogenous specifications described below. The objective of this approach is not to
reproduce the complex and almost infinite choices faced by a real-time investor but to create
a rich set of conditional strategies based on different characteristics among which the investor
could reasonably make his choice. Assessing the performance of conditional asset allocation
across this set of conditional strategies permits to test the robustness of the empirical results
documented in the literature to the presence of real-time uncertainty.

The first arbitrary specification is related to the choice of predictive variables. The number
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of papers documenting the presence of predictability in stock returns has grown very rapidly
since the late 80’s. Early evidence of predictability in US stock returns is provided among others
by Keim and Stambaugh (1986) or Fama and French (1988, 1989). They show that variables
such as the dividend yield, the term and default spread, the short-term interest rate or the
lagged stock index return have some predictive power. Other predictors are represented by the
dividend payout ratio (Lamont, 1998) or the stock market volatility (see French et al., 1987).
Unfortunately, choosing the optimal set of predictive variables is complicated because theoretical
arguments are weak. The most common explanation to the predictive power of some variables
rests on their relationships with the business cycle (Harvey, 1989; Chen, 1991). But even if
one believes in these empirically tenuous links, the set of eligible predictive variables remain
large. For instance, both the term spread and the short term interest rate can be perceived as
predictors of future growth. Moreover, all variables related to asset prices (the earning ratio, the
dividend yield or the book-to-market ratio) can be interpreted as proxies for the current state
of the economy through the discount factor mecanism. In an international setting, the choice
of efficient variables becomes even more intricate because of the distinction between global and
local predictive variables. Not only the relative importance of local and global variables is likely
to depend on the degree of integration of the local markets to the world capital market (Bekaert
and Harvey, 1995), but even in integrated developed markets, Harvey (1991) shows that local
predictive variables still add some additional explanatory power over global ones. In light of
these comments, many different combinations of the mentioned predictive instruments could be
reasonably formed to predict the various assets making up the investment universe.

The second exogenous choice that a real-time investor has to make concerns the estimation
window length. This decision is far from straightforward because of the following well-known
trade-off. On the one hand, it is necessary to take the longest possible time-series in order to
reduce the bias of the regression coefficients present in small samples (Stambaugh, 1999). On
the other hand, the latter procedure may not be appropriate if economic changes occur within
the estimation window. For instance, if the relation between returns and predictive variables is
subject to structural breaks (Paye and Timmermann, 2002), it would be better to estimate a
model whose coefficients rapidly reflect these changes. For these reasons, the best window length
is a priori unknown by a real-time investor. Contrary to the choice of predictive variables, the
selection of the estimation window length does not only apply to conditional asset allocation: in
order to implement unconditional strategies one needs estimates of the unconditional expected
return vector and covariance matrix. As these estimates depend on past data, they are also
subject to structural changes in the economy.

Finally, a real-time investor has to decide if portfolio selection constraints should be put on
the asset allocation weights. Because of the weak predictive power usually observed in the data
and the presence of both estimation bias and structural breaks, the estimator of the conditional
expected excess return vector eΠt is subject to estimation risk. It therefore makes the optimiza-
tion process of Equation (2) prone to the same critics as the ones addressed to unconditional
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asset allocation based on historical means. For instance, Jobson and Korkie (1981) or Jorion
(1985) indicate that estimation risk has disastrous consequences on the out-of-sample perfor-
mance of unconditional mean-variance strategies. It is especially the case for expected returns,
as estimation errors on expected returns have a negative impact on the investor utility func-
tion which is 10 to 22 times higher than the one related to covariance matrix estimation errors
(Chopra and Ziemba, 1993). These conclusions are also supported by Best and Grauer (1991)
who show that portfolio weights are extremely sensitive to small changes in expected returns.
Being aware of estimation risk, a real-time investor may want to put various constraints to the
optimization process in order to reduce this risk. Frost and Savarino (1988) explain that bounds
on the minimum and maximum weights reduce estimation errors and yield better out-of-sample
performance. Besides, as it is stressed by Jagannathan and Ma (2003), imposing no-shortsale
and upper-bound constraints is equivalent to reducing extreme values present in the expected
return vector. Some of the previous studies prevent short-selling (e.g. Hamelink, 2000; Handa
and Tiwari, 2000) or add upper-bound constraints (Harvey, 1994), but once again the choice
of the optimal constraint remains unknown ex-ante and mainly depends on the quality of the
predictions. In fact, these constraints may even be wrong in population and induce specification
errors but if the reduction of estimation risk obtained in small sample is sufficient, it can offset
the previous drawback.

4 Empirical Specification

4.1 Description of the Data

The investment universe is composed of 12 developed markets which are Australia, Belgium,
Canada, Denmark, France, Germany, Italy, Japan, Netherlands, Switzerland, United Kingdom
and the United States. The time horizon is set to one month, which defines a reasonable port-
folio rebalancing frequency and both reduces the noise in the predictive regressions and the
heteroscedasticity of the residuals when shorter periods are considered. Returns in local cur-
rency, eRf

it+1 (i = 1, ..., 12), are computed with Datastream country indices (price and gross
dividends reinvested). They correspond to value-weighted portfolios of the larger firms traded
in each market. In order to compute country index excess returns in local currency, erfit+1
(i = 1, ..., 12), the riskless asset of each country is proxied by the one-month euro-market rate.

At the time when Datastream indices were created in 1973, many academics thought that
stock returns were unpredictable (Fama, 1970). As a result, it is questionable that an investor
could have been able to implement conditional methods from the early 70’s on. For this reason,
all strategies considered in this paper start in January 1990. Since it is assumed that the condi-
tional asset allocation is implemented with futures contracts, another important question is to
know whether Datastream indices give a fair representation of the position taken in the country
stock index futures markets. To answer this question, we examine the excess return time-series
of the Datastream indices and the country indices on which commonly traded futures contracts
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are based4. Unreported results (computed between January 1990 and September 2004) indicate
that the average pairwise excess mean difference absolute value between the two types of indices
is equal to 0.7% per year and the average correlation amounts to 0.98. As a result, the excess
return of the conditional asset allocation can be confidently measured with the Datastream in-
dices. Some descriptive statistics based on the excess return time-series between January 1990
and September 2004 are presented in the Appendix.

Finally to check the consistency of Assumption 1, we test for heteroscedasticity in the predictive
regression residuals of each country index. Using different sets of predictive instruments (see
the description proposed in the next section), we compute the time-series of residuals for each
index excess return between January 1990 and September 2004 and examine autocorrelograms
and partial autocorrelograms of the squared residuals. In unreported results, we analyse the
various coefficients computed for all sets of instruments. The figures do not reveal the presence
of heteroscedasticity: the vast majority of coefficients are not statistically different from zero
and the few significant ones appear at distant lags. In light of these results, the homoscedasticity
assumption is reasonable in the empirical framework adopted here.

4.2 Definition of the three sets of exogenous specifications

4.2.1 Set of predictive variables

In order to define predictive variables that a real-time investor could reasonably choose, we
largely build on past studies. The first step consists in classifying each instrument according
to its nature (related to interest rates or asset prices) and its area of influence (global or local
influence on capital markets), which allows to take into account the international framework of
our paper. This procedure yields four groups of variables shown in Table 1.

[INSERT TABLE 1]

The lagged stock index excess return in local currency and the relative dividend yield for each
country are provided by Datastream. The dividend yield at time t is computed as the ratio
of the previous 12-month dividends paid by the firms included in the index on their market
capitalisation at time t. Short term interest rates are proxied by one-month euro-market inter-
est rates. The term spread is defined for each country as the difference between the yield of
long-term government bonds provided by International Financial Statistics and the one-month
euro-market interest rate. For the majority of countries, the long-term yield corresponds to
the value-weighted average yield of government bonds with a minimal remaining maturity of
5 years. Turning to the description of global variables, the lagged world index excess return
and its related dividend yield are computed from the Datastream world index expressed in US
dollars. Global information related to interest rates are proxied by US variables. Finally, the

4These are the following: S&P/ASX 200 (Aus), BEL 20 (Bel), S&P/TSX (Can), KFX (Den), CAC40 (Fra),
DAX (Ger), MIB30 (Ita), S&P Topix (Jap), AE-Index (Net), SMI (Swi), FT-SE 100 (UK), S&P 500 (USA).
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US default spread downloaded from the website of the Federal Reserve Bank of Saint Louis
is computed by Moody’s as the difference between the average yield of long term (superior to
10 years) Baa-rated corporate bonds and the average yield of long term (superior to 10 years)
Aaa-rated corporate bonds.

We combine the 4 different groups shown in Table 1 in order to obtain 7 different predic-
tive models used to determine the conditional expected excess returns of all country indices.
The 7 specifications are the following: Local (groups 1 and 2), Global (groups 3 and 4), Asset
(groups 1 and 3), Interest (groups 2 and 4), GassetLinterest (groups 2 and 3), LassetGinterest
(groups 1 and 4) and All (groups 1, 2, 3 and 4).

The estimator of the conditional expected country excess return eπit (i = 1, ..., 12) is based on
the following linear specification:

erit+1 = bαi + N1
kX

j=1

bφij · eZjt +

N2
kX

l=1

bφil · eZi
lt
+ eξit+1 (6)

where erit+1 is the excess return for the ith country, eZjt

¡
j = 1, ..., N1

k

¢
represent the global

variables of the kth model specification (k = 1, ..., 7) and eZi
lt

¡
l = 1, ..., N2

k

¢
are the local variables

of the kth model specification (k = 1, ..., 7), which of course depend on i. Finally, eξit+1 denotes
the ith country regression residual. The coefficients of Equation (6) estimated up to time t− 1
are used together with the value of the predictive variables at time t to obtain an out-of-sample
prediction for each country index excess return between t and t+ 1.

4.2.2 Set of estimation window lengths

The uncertainty related to the choice of the estimation window length concerns both conditional
and unconditional asset allocations through the estimation of the the conditional moments
(Πt and Σ) and the unconditional ones (µ and V ). In order to estimate these parameters for the
two different allocation methods, we propose two estimation procedures. The first one consists
in taking an expanding window. The initial length of the estimation window is respectively set
to 60, 80 and 100 datapoints. The second estimation procedure is based on a rolling window
with three different fixed window lengths respectively equal to 60, 80 and 100 datapoints.

4.2.3 Set of portfolio selection constraints

For both conditional and unconditional strategies, four different sets of constraints presented in
Table 2 are modelled in order to reduce estimation risk.

[INSERT TABLE 2]
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The first strategy (called Free) consists in a free mean-variance optimization. The strategy
called Positivity disallows to sell short both risky assets and the riskless one. Following Frost
and Savarino (1988), the strategy Diversification imposes diversification as it prohibits weights
greater than D. Finally, the strategy Variability forces the weights at two consecutive rebalanc-
ing dates t and t + 1 to be close to one another, implying that bets on various assets remain
more stable through time. The results described in the following sections are based on D equal
to 20% (implying a maximum 5-asset diversification) and L equal to 30% (implying a maxi-
mum turnover of 180%). In unreported results, we find that the performance of the strategies
Diversification and Variability remains virtually unchanged if D or L are fixed to 10%, 20% or
30%. For instance, if we compare the two sets of strategies Variability obtained with L equal to
10 and 30%, the average pairwise correlation amounts to 0.82 and the average pairwise excess
mean difference absolute value is equal to 1.05% per year. As a result, the performance anal-
ysis documented hereafter is robust to changes in D and L. In order to be sure that all these
strategies generate weights that can be reasonably taken by a real-time investor, it is assumed
that the sum of the squared weights are inferior to 4. It prevents situations where estimation
error generates extreme positions that could never be taken by any investor. For instance, a free
optimization done with totally wrong parameters could easily produce weights with absolute
values between 2000 and 3000 percent especially when the risk aversion coefficient A is low.

To summarize the procedure, the conditional strategies are generated by means of 7 sets of
instruments, 6 estimation techniques and 4 types of constraints, which amounts to the estima-
tion of 168 models for a given risk-averse investor. For the unconditional approach, considering
6 estimation techniques and 4 types of portfolio constraints yields a total of 24 models.

4.3 Levels of risk aversion and transaction costs

The results are examined for three types of investors characterized by different risk aversion
coefficients A. The impact of this parameter on the portfolio allocation process is important
because of the following trade-off. On the one hand, a low risk aversion parameter increases the
portfolio exposure to estimation risk as the investor plunges into securities with high expected
returns, low variance or covariances. Indeed, Chopra and Ziemba (1993) show that the smaller
the risk aversion parameter, the greater impact estimation errors produce on the investor’s ex-
pected utility. On the other hand, if the estimated expected return vector is sufficiently accurate
a low risk aversion parameter allows to take fully advantage of the predictions by inducing more
aggressive bets. The relative importance of these two factors is an empirical matter which needs
to be investigated. The three different values taken by A are respectively equal to 2, 5 and 10.

Another important aspect concerns the impact of the transaction costs on the profits gener-
ated by the various strategies. Three different levels of transaction costs are modelled (low,
medium and high) for both the stock index futures contracts (for the conditional strategies)
and the underlying securities (for the unconditional strategies). The net excess return of each
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strategy rnetpt+1 is based on the following formula:

rnetpt+1 = rpt+1 − tc · wturn (1 + rpt+1) (7)

where tc is the roundtrip transaction cost and wturn is the portfolio turnover at each rebalancing
date. It is computed as:

wturn =
1

2

NX
i=1

¯̄
wit+1 − wB

it

¯̄
(8)

where wB
it =

wit(1+rit+1)
(1+rpt+1)

. Since the positions in the futures market are taken for one month,
wturn is equal to one for conditional strategies. In the first case, the roundtrip transaction costs
tc amount to 10 basis points (bp) of principal value in the index futures market and to 50 bp
in the stock market. In the second case, they are equal to 20 and 80 bp and in the third cases
they are set to 40 and 120 bp.

5 Comparative Analysis of Conditional and Unconditional Strate-
gies

5.1 Descriptive statistics

We begin this section by showing characteristics of the investment process at each porfolio
rebalancing date induced by conditional and unconditional asset allocations. As there exists
168 conditional and 24 unconditional strategies, all figures documented in Table 3 represent
averages over all possible specifications. For instance, the column "average country weight
mean" is computed as follows: we first evaluate the average country weight at each date t for
each strategy (average across countries having an non zero weight). Then, we compute the
mean of the average portfolio weight for each strategy (average across time). Finally, we collect
this figure for each strategy and calculate the grand mean (average across strategies). The
other columns are computed in a similar way. On average both unconditional and conditional
strategies are fairly well diversified since around 8 countries are targeted on average at each
rebalancing date. We can notice that the average country weight mean is higher for conditional
strategies, thus implying greater bets on the various assets. Consistently with the intuition,
an investor with a lower risk aversion parameter A takes higher bets since the average country
weight mean is 10% higher than the one obtained for A = 10. The standard deviation of the
average country weight is nearly two times higher for the conditional strategies, indicating that
the latter are prone to substantial weight variability. This feature is confirmed by the portfolio
turnover. On average, more than 80% of the conditional portfolio is rebalanced for all three
values of A whereas it is much lower for the unconditional approach. This comment gives credit
to the approach used in this paper consisting in implementing conditional asset allocation by
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means of stock index futures contracts.

[INSERT TABLE 3]

Turning to the description of the annualized excess mean, standard deviation, Sharpe ratio and
final wealth computed as averages over the 168 conditional and 24 unconditional specifications,
Table 4 examines the case where no transaction costs are considered. Comparing conditional
and unconditional strategies, we first notice that both the excess mean and standard deviation
of the conditional strategies are higher independently of A. When A is low, the increase in
risk (33.7 against 32.0%) is compensated with a substantial return premium over the uncondi-
tional strategies (10.3 against 4.9%). On the contrary, when A is high, the conditional asset
allocation produces a much higher risk (20.3 against 13.5%) for a low premium (5.9 against
4.0%). To examine if all of these differences are significant, we bootstrap the excess return
time-series of all conditional and conditional strategies in order to construct the distribution
of the excess mean and standard deviation differences under the null assumption of no differ-
ence5. The excess mean of the conditional strategies is significantly higher at the 10% level
for A = 2 but it is not significantly different from the unconditional strategies for A = 5 and
10. Moreover, the standard deviation of the conditional strategies is significantly higher for all
values of A, meaning that conditional asset allocation is always riskier. Second, examination
of the Sharpe ratio and the final wealth generated if one currency unit is invested in January
1990 suggests that on average conditional strategies generate higher risk-return trade-off and
capital gains than unconditional strategies. Nevertheless, using the bootstrap procedure we find
that the differences are never significant because of the important standard deviation of the
strategies. It implies that the striking differences documented for A = 2 (0.14 for the Sharpe
ratio and 1.02 for the final wealth) are frequent under the null assumption of no differences.
It is therefore difficult to draw strong conlcusions based on the Sharpe ratio and the final wealth.

For comparative purpose, Table 4 also contains summary statistics of 3 buy and hold strategies:
the weights are defined at the beginning of the period in January 1990 and the portfolio is
never rebalanced during the whole period. The first portfolio is value-weighted (Market), the
second one equally-weighted (Equal) and the third one GDP-weighted (GDP)6. Because of the
sharp decline of the Japanese market in the 90’s, holding the market portfolio leads to an excess
mean which is always significantly lower than the conditional strategies at the 10% percent
level. On the contrary, Equal and GDP represent interesting alternatives to both unconditional
and conditional approaches in terms of risk-return trade-off and final wealth. For example, the
bootstrap analysis shows that the standard deviation of Equal is significantly lower that the

5The bootstrap is often more accurate in finite samples than first-order asymptotic approximations (Horowitz,
2001). In unreported results, we also implemented a blockbootstrap methodology with block length equal to n

1
4

(proposed by Hall et al., 1995) but the difference between bootstrap and blockbootstrap is negligible in our tests.
6 In the early 90’s, the market capitalization of Japan was very important (49.3% in our sample). For these

reasons, some institutions decided at that time to reduce their exposures to the Japanese market by creating
global indices based on GDP weights.
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standard deviation of conditional strategies whereas its excess mean is significantly lower in
only one situation (for A = 2).

[INSERT TABLE 4]

When transaction costs are taken into account, the average standard deviation remains constant
for both unconditional and conditional strategies, but the average excess mean is reduced, thus
implying smaller Sharpe ratios and final wealth. Table 5 illustrates these comments in the
intermediate case of medium transaction costs (20 bp in the futures and 80 bp in the stock
market). The diminution of the average excess mean, Sharpe ratio and final wealth are fairly
homogenous in all cases and are approximately equal to 2%, 0.07 and 0.40 respectively. Since
the statistics of the buy and hold strategies are not influenced by the introduction of transaction
costs, Equal and GDP become the most performing strategies in terms of Sharpe ratio and final
wealth. This is supported by the p−values related to the excess mean and standard deviation
differences between the conditional strategies and Equal: the difference is never significant for
the excess mean but is always significant for the standard deviation.

[INSERT TABLE 5]

To summarize this descriptive analysis, we notice that on average the conditional asset allocation
provides better results in terms of excess mean return, Sharpe ratio and final wealth than the
market portfolio and unconditional strategies. But the bootstrap analysis shows that most of
these differences are not statistically significant except for the case where A is low. Moreover,
the introduction of transaction costs makes the conditional allocation less attractive than GDP
and equally-weighted portfolios for the three different levels of risk aversion.

5.2 Final wealth distribution

An interesting approach to assess the economic significance as well as the risks associated with
conditional asset allocation consists in examining the distribution of final wealth generated
by all conditional specifications. More precisely, the latter represents the distribution of final
wealth faced by an investor who randomly picks up one specification among the 168 conditional
strategies and invests one currency unit. As an illustration, Figures 1 shows these distributions
for the intermediate case where A = 5 under the four levels of transaction costs.

[INSERT FIGURE 1]

These figures deliver an important message concerning the risks related to the two approaches:
the final wealth distribution of conditional strategies is widely spread and covers a large range
of outcomes, thus implying substantial risks. The most disturbing feature comes from the im-
portant downside risk related to the fat left-tails of the distribution. Without transaction costs,
the 5%-VaR of the conditional strategies is equal to 0.44 (compared to 0 for the unconditional
methods). In the case of medium transaction costs, the 5%-VaR amounts to 0.67 (compared
to 0.17 for the unconditional methods) and jumps to 0.84 when transaction costs are high. On

15



the contrary, the final wealth distribution of the 24 unconditional strategies is peaked around
one, yielding a more homogeneous overall performance. The gains generated by these strategies
are never spectacular and the probability of a loss is similar to the one related to conditional
strategies. But if a loss occurs, it is not severe.

Considering the case of a more risk-averse individual (A = 10), the previous comments are
strenghtened since the implementation of the 24 unconditional strategies under the 4 levels of
transaction costs never cause capital losses, whereas the 5%-VaR of the conditional strategies
repectively amount to 0.29 (no transaction costs) and 0.57 (medium transaction costs). Finally,
if A is low, the large bets taken by the investor induce important capital losses for a substantial
number of conditional strategies and procuce the highest Values-at-Risk. In fact, examination
of the final wealth distribution explains why the high average final wealth documented in Tables
4 and 5 for A = 2 is high: it is simply due to a couple of extreme strategies, which produce
impressive final wealth and compensate the general bad results obtained by the other speci-
fications. The main conclusion that can be drawn from this analysis is that the conditional
asset allocation is subject to important downside risk independently of the level of risk aversion.
Besides, this risk increases when transaction costs are taken into account.

6 Performance Analysis across the Three Different Exogenous
Specifications

6.1 Methodology

In order to assess the performance of conditional asset allocation, we use two different measures:
the Cornell measure and the Sharpe ratio. Contrary to other measures based on asset pricing
models, they are benchmarkfree. This important property makes them more adapted to an
international context as reasonable sources of systematic risk are very difficult to define (Solnik,
1993). The Cornell measure, denoted by C, (first proposed by Cornell, 1979), is defined as the
sum of the N covariances between the ith risky asset weight ewit defined at time t and its excess
return erit+1 between t and t+ 1:

C =
NX
i=1

cov( ewit, erit+1) (9)

The general objective of the Cornell measure is to determine if an active strategy is based on
superior information. The intuition behind this measure is straightforward: if an investor thinks
that the excess return of the ith security is higher than usual, he will decide to overweight this
asset in the portfolio, thus inducing a positive value for cov( ewit, erit+1). In our context where it
is assumed that Σt = Σ (see Assumption 1), the investor’s superior information is only defined
with respect to the predictive ability on the first moment of the excess return distribution.
Using this relation, it can be shown (see the proof in the Appendix) that the Cornell measure of
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the conditional strategy is positive if and only if there is superior information. As a result, the
Cornell measure is capable of detecting superior information and can be seen as a test of global
predictability over all assets. To estimate the Cornell measure, we use the following unbiased
estimator proposed by Grinblatt and Titman (1993):

eCcond =
TX

t=k+1

NX
i=1

erit+1 ( ewit − ewit−k) =
TX

t=k+1

er0t+1 (10)

where er0t+1 is the return of a zero-cost portfolio formed with a long position ewit (defined at
time t) and a short position ewit−k (defined at time t − k) taken in the ith asset (i = 1, ..., N).
Following the arguments of Grinblatt and Titman (1993), k is based on a one quarter lag.

The second performance measure based on the Sharpe ratio has been widely used in previ-
ous studies. It is defined as the differential between the Sharpe ratio of the conditional strategy
and the one of an uninformed strategy. If this differential is positive, it is then argued that the
conditional strategy is preferable. It is certain that the conditional optimization rule defined in
Equation (2) may affect higher moments of the excess return distribution which are not captured
by the Sharpe ratio (Dybvig and Ross, 1985). To anwser this question, Barras (2004) simu-
lates the excess return distribution of conditional asset allocation based on reasonable levels of
predictability (i.e. it is assumed that the predictive variables explain 1% or 3% percents of the
asset excess return variance). He shows that both the skewness and kurtosis of the conditional
asset allocation are low, thus implying that the differential Sharpe ratio is always positive. In
light of this result, it is reasonable to use the Sharpe ratio as a preference indicator between
conditional and unconditional strategies.

The objective of this section is to assess the global performance of conditional asset allocation
considering the 168 strategies and to know if the performance varies according to the different
exogenous specifications that may be reasonably chosen by any investor. If the performance
remains constant, it means that real-time uncertainty is not an issue since the investor could
take any conditional strategies and still achieve superior performance. The approach is based
on the percentage of specifications yielding a Cornell measure and a Sharpe ratio differential
superior to zero. The p-value of this percentage under the null hypothesis that all conditional
strategies have in turn a zero Cornell measure and a zero Sharpe ratio differential is computed
with the bootstrap method developed by White (2000). More precisely, the p-value under the
null is computed by bootstrapping simultaneously the excess return time-series of all strategies
1’000 times. As a result, this test does not destroy the contemporaneous links between the
strategies contrary to the approach used by Cooper and Gulen (2004). A brief description of
the methodology adapted to our context is presented in the Appendix.
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6.2 The Cornell measure

The percentages of conditional strategies with a positive Cornell measure are displayed in Table
6. For the three different risk coefficients A, the results are disappointing. The percentages of
strategies having a positive Cornell measure are low since they are equal to 40.5, 36.9 and 30.4
for the three respective values of A. More importantly, they are not statistically different from
zero at the 10% percent level as it shown by the White’s p-value in parenthesis. It means that
if all conditional strategies are assumed to have a Cornell measure equal to zero, it is frequent
to observe the percentage values shown in Table 6. This bad performance is consistent with the
average explanatory power of the predictions: if we run out-of-sample regressions of excess re-
turns on the forecasts, the average R2 across the 12 countries is always equal to zero for all sets
of predictive variables, thus confirming the results obtained by Bossaerts and Hillion (1999).
Looking at the different percentages across the three specification sets (predictive variables,
selection constraints and estimation techniques), we notice that none of them is statistically dif-
ferent from zero. It therefore prevents us from drawing strong conclusions based on percentage
comparisons. Concerning the predictive variables, we can see that strategies based on Local, All
or Asset generate low percentages in all cases: it is particularly striking for A = 2 since the high-
est percentage related to Global or Interest is substantially higher. Similarly, the percentages
associated with the optimization Free is in all cases lower than those obtained with constrained
optimizations, indicating that constraints may have a positive impact on performance. Finally,
strategies based on rolling windows display a positive Cornell measure more often but there is
no clear pattern for the size of the window: for instance, increasing the window size has a nega-
tive impact with an Expanding technique whereas it is positive under a Rolling specification for
A = 5 and 10. The main conclusion from this performance analysis is that the Cornell measure
is unable to detect the presence of superior information across the different specifications on
which conditional strategies are based.

[INSERT TABLE 6]

6.3 The Sharpe ratio

In order to compute the Sharpe ratio differential we must select uninformed strategies serving
as benchmarks. 4 different benchmarks are selected: 2 unconditional and 2 buy and hold
strategies. In order to choose 2 unconditional strategies among the 24 existing ones, we use the
following method: all unconditional strategies are ranked in increasing order according to their
Sharpe ratios and the specifications in the 50 and 75% quantiles are chosen (they are hereafter
denoted by 50 and 75%)7. Concerning the buy and hold strategies, we use the market portfolio
(denoted by Market) and the equally-weighted portfolio (denoted by Equal). Since the results

7Even if the implementation of the unconditional asset allocation is also prone to real-time uncertainty, we
argue that these two benchmarks give a fair representation of the performance achievable with the unconditional
approach for two reasons. First, we purposely select strategies which are not at the top of the ranking. Second, as
it is explained in the previous section the performance of the unconditional asset allocation is quite homogeneous
across the 24 specifications.
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are similar for the three aversion parameters, we only discuss the intermediate case (i.e. A = 5).
Table 7 contains the percentage of strategies having a positive Sharpe ratio differential without
transaction costs. The global percentages related to the 50, 75% benchmarks and the market
portfolio respectively equal to 79.8, 69.0 and 94.0% are strongly significant at the 10% level.
This result is positive for the conditional asset allocation since a significant proportion of the
168 conditional specifications are able to beat three among the four uninformed benchmarks.
But this superior performance is not systematically present across the different specifications
(predictive variables, selection constraints and estimation techniques) that could be chosen
by a real-time investor. First, if we examine more precisely the percentage variation across
the predictive variables, there is a wide dispersion demonstrating that the choice of the correct
information set has a crucial impact. For instance, the percentages related to Asset are extremely
low, while the ones associated with All are always superior to 75%. Among the set of portfolio
constraints, Diversification and Variability obtain the best results since their percentage of
positive Sharpe ratio differential is significantly different from zero for all benchmarks. The
performance is very disappointing for Free: it only beats Market, which is not surprising in light
of the disastrous performance of the market portfolio during the period. This result highlights
the need for portfolio constraints in the optimization process in order to reduce estimation risk.
Finally, the examination of the performance across the set of estimation window does not reveal
a clear pattern: in the case of Expanding window, the smallest window obtains the best results
whereas the medium window size is more appropriate for Rolling specifications.

[INSERT TABLE 7]

In order to analyze the impact of transaction costs on the performance of conditional asset
allocation, we present in Table 8 the percentage of positive Sharpe ratio differentials considering
medium transaction costs (20 bp in the futures and 80 bp in the stock market). This modification
does not alter the main comments previously developed. First, the various percentages related
to the two unconditional benchmarks (50% and 75%) remain fairly constant. This result is not
surprising since the unconditional strategies are also affected by the introduction of transaction
costs. Second, the percentage variation across the different specifications (predictive variables,
selection constraints and estimation window) is also present. The most important modification
comes from the performance related to the buy and hold strategies. Indeed, we notice that
the percentages related to the equally-weighted portfolio drop substantially: since the reduction
ranges from 20 to 30% in all cases, only one type of specifications (Diversification) yields a
percentage significantly different from zero. Since the same outcome is obtained with the GDP-
weighted porfolio, it is likely that the conditional asset allocation is not able to outperform a
large range of passive strategies (except those which are heavily invested in the Japanese stock
market in January 1990).

[INSERT TABLE 8]

To conclude this section, let us insist on the two important results stemming from this analysis.
First, the overall performance in terms of Sharpe ratio is mitigated: on the one hand, conditional
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asset allocation are able to beat unconditional strategies for different levels of transaction costs
and risk aversion parameters. But on the other hand, they have difficulty in outperforming buy
and hold strategies especially when realistic transaction costs are accounted for. Second, the
percentage variation across the various specifications clearly indicates that real-time uncertainty
has an important impact. For instance, an investor who would use GassetLinterest variables
would have a high probability of beating all uninformed benchmarks, which is not the case
if he had selected Asset variables. The same comment applies to Free and Diversification
portfolio selection constraints. This remark raises an interesting issue: concrete applications of
conditional asset allocation could still generate high economic profits if the real-time investor
was able to select performing models. It would be the case if the best models shared common
characteristics that could be detected from an ex-ante perspective. This analysis is the object
of the next section.

7 Characteristics of the Conditional Strategies

In order to know if the best strategies share common characteristics, our approach consists
in comparing some of the best and worst strategies and assessing their sources of differences.
For all levels of risk aversion coefficients and transaction costs, we rank the 168 conditional
strategies according to their final wealth and compare the composition of the 30 worst and
best strategies across the different specifications (predictive variables, selection constraints and
estimation window). Table 9 shows these results for the three levels of risk aversion without
transaction costs (the results considering transaction costs are similar and thus not displayed).
Notice that the proportion of worst models inducing a capital loss (i.e. a final wealth inferior
to one) is respectively equal to 100% for A = 2, 93.4% for A = 5 and 66.6% for A = 10.
The most striking feature lies in the fact that some of the exogenous variables among the
different specification sets are largely spread among the best and worst models. For instance,
the predictive model Interest or LassetGinterest both serve as a basis for the implementation
of the best and worst strategies independently of A. Moreover, it may be argued that Global
constitutes an ex-ante proper predictive model for developed markets since they are likely to
be fully integrated but it is not the case: 20% of the worst models rest on this specification
for A = 2 and 5. This conclusion also holds for the estimation windows: if we examine the
distribution of expanding and rolling windows, the worst and the best models use all of the
different window lengths with similar frequencies. The dispersion of the selection constraints
between the worst and best models is even more disturbing. Since there are good reasons to
believe that the estimation of the conditional expected excess return vector eΠt is subject to
estimation risk, putting constraints represents one of the only actions that may be rationally
taken ex-ante by a real-time investor. Unfortunately, the results provided in Table 9 are not
encouraging. First, the unconstrained optimization Free forms 30% of the best models, even
though its application leads most of time to disastrous results. Second, it is not rare to observe
specifications based on portfolio constraints which yield disappointing performance. This is the
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case for Positivity (consider the case where A = 5 and 10) and Variability for all levels of A.

[INSERT TABLE 9]

This wide parameter dispersion implies that minor specification changes substantially reduce
the generated profits. Several examples documented below illustrate this fact. First, let us first
modify the set of predictive variables. For A = 2 and no transaction costs, the conditional
strategy based on All, Variability and an Expanding window of 80 datapoints obtains a final
wealth and a Sharpe ratio respectively equal to 6.3 and 0.55. If we select Asset instead of All,
the final wealth and the Sharpe ratio fall to 0.62 and 0.05. Second, if the portfolio constraints
are changed, the performance reduction is also substantial: for A = 10 and no transaction costs,
if an investor adopts the strategy based on Interest, Positivity and Expanding 100, he obtains
a final wealth equal to 1.51. If he had selected Variability instead of Positivity, he would have
lost half of his initial wealth. Finally, consider changes of the estimation windows. For A = 5
and medium transaction costs, let us modify the strategy Interest, Variability and Rolling 80
to the strategy Interest, Variability and Expanding 80: the final wealth falls from 3.21 to 0.41
and the Sharpe ratio from 0.41 to 0.08. The main conclusion of our analysis is that there are
no common characteristics that could be used ex-ante to select performing conditional asset
allocations. Since the results are very sensitive to minor changes inside the sets of exogenous
specifications, we conclude that the performance of the best conditional models is difficult to
replicate in real-time. In fact, the lack of solid theory behind the choice of the predictive models
represents a crucial point. Even if, at a precise point in time, the investor realizes that the ma-
jority of the successful models use similar predictive variables and estimation techniques, these
specifications cannot confidently be used in the future: it is almost sure that these relations
only hold during the investigated period and is likely to be modified in the future. Since it is
extremely difficult to justify their use with theoretical arguments, information obtained from
past data are unlikely to be useful for a real-time investor.

Of course it is possible that the real-time investor tests several conditional specifications during
the investigated period. For instance, he may want to modify the conditional strategy if the
latter has performed poorly in the recent past. But this behaviour may not be optimal: first, it
is possible that the initial model will generate substantial profits in the future and second his
new selected model may be as bad as the first one. Another possibility consists in combining a
large set of predictive models in order to obtain more precise asset excess return predictions (see
Aiolfi and Favero (2002) for an application to the US market). Indeed, Yang (2004) shows that
when a single variable is predicted, a convex combination of all the model predictions yields a
lower square error loss function8 than the best individual model. Unfortunately, an extension of
these results to our multi-asset framework is far from straightforward. Indeed, the loss of utility

8This function is defined as 1
T

T

t=1

E (πt − πt)
2 , where T is the number of forecasts, πt and πt respectively

denote the true and estimated conditional expectation of the dependent variable.
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implied by bad predictions rests on the mean-variance trade-off expressed in Equation (2). As
it depends on the simultaneous prediction errors made for the N assets, the results obtained by
Yang for a single asset can not be used. Moreover, the theory behind the use of thick modelling
only focuses on predictive models and does not indicate how different portfolio selection con-
straints can be combined together. Finally, the required time to combine all predictions across
all predictive variables and countries is extremely long. Therefore, as long as coherent model
aggregation rules for both predictive models and portfolio constraints are not available, it is
conceivable that this approach also leads to disappointing performance.

8 Conclusion

Previous studies show that mean-variance conditional asset allocation based on predictability
systematically outperforms uninformed strategies. We test the robustness of these documented
results to the presence of real-time uncertainty. Once real-time uncertainty is explicitly taken
into account, the performance of these strategies turns out to be poor across different levels
of transaction costs and investor’s risk aversion. First, the average excess return, Sharpe ratio
and final wealth over the 168 conditional strategies are not statistitically different than the
ones documented for unconditional and buy and hold strategies in the vast majority of cases.
Moreover, the distribution of final wealth generated by conditional asset allocation is subject
to important downside risk. Second, the performance measured by the percentage of positive
Cornell measure indicates that none of the conditional strategies is based on superior infor-
mation. Examination of the Sharpe ratio differential reveals that conditional asset allocation
is able to outperform unconditional asset allocation but is beaten by buy and hold strategies
especially when transaction costs are accounted for. Finally, the best models do not share com-
mon characteristics liable to help the real-investor to select performing models ex-ante. Since
there is no theoretical grounds behind predictability, an unlucky investor could perfectly pick
up a bad model inducing important capital losses. Our results can be related to other papers
such as Cooper, Gutierrez and Marcum (2001) or Cooper and Gulen (2004) which clearly show
the important impact of real-time uncertainty. For instance, Cooper, Gutierrez and Marcum
(2001) indicate that popular measures of systematic risk such as the book-to-market ratio or
the firm size are not useful ex-ante to form strategies with higher returns. The difficulty in
determining the best specifications through time therefore casts an important doubt on both
cross-sectional and time-series predictability. Our paper unambiguously calls for a more efficient
implementation of conditional asset allocation, which unfortunately would come from a better
understanding of very complex relations. For instance, its improvement crucially depends on
a more precise definition of the sources of predictability and the causes of their time-variation.
It also rests on the analysis of the trade-off between estimation risk and specification risk in
small samples in order to specify adequate portfolio constraints likely to improve out-of-sample
performance.
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9 Appendix

9.1 Descriptive statistics of the Datastream country indices

Table 10 presents some distribution characteristics of the 12 developed market monthly excess
returns in local currency between January 1990 and September 2004 (176 datapoints). The
computation is based on the country Datastream indices (price and gross dividends reinvested)
and the one-month euro-market interest rates. One can notice the high average excess returns
for the Switzerland and the USA as well as the sharp decline of the Japanese stock market.
The normality assumption is rejected in 7 markets at the 10% level. The correlation matrix
reproduced in Table 11 shows that the potential for diversification is limited as 78% of the
correlations are superior to 0.50. This result is not surprising since these countries are likely to
be integrated to the world capital market. Both Australia and Japan display low correlations
with other countries but in light of the Japanese negative excess mean, only Australia offers an
interesting potential for diversification during the 90’s.

[INSERT TABLE 10 AND TABLE 11]
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9.2 Relation between the Cornell measure and superior information

The analytical form of the Cornell measure defined in Equation (9) for the conditional strategy,
denoted by Ccond, can be derived as follows. From the first-order conditions of the optimization
program defined in Equation (2), the N×1 portfolio weight vector ewt is equal to ewt =

1
AΣ

−1eΠt.
Using this expression, the N ×N covariance matrix between the N × 1 portfolio weight vectorewt and the N × 1 conditional expected excess return eΠt is equal to:

cov
³ewt, eΠt´ = 1

A
Σ−1Ω (11)

where Ω denotes the covariance matrix of the conditional expected excess return vector eΠt.
Taking the sum of its diagonal elements gives the Cornell measure:

Ccond =
1

A
Tr
¡
Σ−1Ω

¢
(12)

We assume that the investor has superior information if the N × 1 conditional expected excess
return eΠt is different from the N × 1 unconditional expected excess return µ for at least one
realization of It. It thus implies that the covariance matrix of the prediction Ω is different from
zero. The following proposition examines the relation between the Cornell measure and the
notion of superior information.

Proposition 9.1 Assuming that Σ is invertible, the Cornell measure of the conditional portfolio
is positive if and only if the investor has superior information.

Proof. If part:
Assume that the investor has superior information (i.e. Ω 6= 0). Ω is symmetric and, by the
property of the covariance matrices, is at least non-negative definite. As a result, it can be
written as Ω = Ω

1
2Ω

1
2 , where Ω

1
2 is also a symmetric and non-negative matrix. We have

x0Ω
1
2Σ−1Ω

1
2x = y0Σ−1y, where y = Ω

1
2x : this expression is always stricly positive except for

cases where y = 0. Therefore, Ω
1
2Σ−1Ω

1
2 is non-negative definite.

Then we use the following property: if a matrix A is nonnegative definite, its eigenvalues
are nonnegative. Indeed, for each eigenvalue λi and eigenvector xi, we can write the following
expressions: Axi = λixi ⇔ x0iAxi = λix

0
ixi. Since xi 6= 0, λi ≥ 0. Applying this property to

Ω
1
2Σ−1Ω

1
2 implies that at least one eigenvalue is different from zero because otherwise it would

contradict the assumption that Ω 6= 0. Therefore, Tr(Ω 1
2Σ−1Ω

1
2 ) = Tr(Σ−1Ω) > 0, which proves

that the Cornell measure is positive.

Only if part:
Suppose that the Cornell measure is stricly positive. It implies that Tr(Σ−1Ω) > 0 and that
Ω 6= 0. Therefore, Πt is different from µ for at least one realization of It, which corresponds to
the definition of superior information.
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9.3 Description of the reality check p-value

Let us followWhite’s notations and denote by fkt+1
³
Zt, bβt´ the performance measure computed

at time t+ 1 for the kth model (k = 1, ..., l). Zt is a matrix which contains the vectors of stock
index excess returns as well as predictive variables up to time t and satisfies the assumptions
stated in White (2000). bβt is the set of estimated coefficients of Equation (6). The performance
statistic for the kth strategy (k = 1, ..., l) computed over n periods is equal to:

fk =
1

n

TX
t=R

fkt+1

³
Zt, bβt´ (13)

Stacking each element fk we obtain a l× 1 vector f with a mean equal to E (f). The approach
adopted by White (2000) consists in knowing whether the best strategy is significantly better
than a benchmark. Since we are rather interested in the percentage of positive performance
statistics among all strategies, let us define the following variables:

qk = 1 if fk ≥ 0 (k = 1, ..., l)

= 0 otherwise (14)

P =
1

l

lX
k=1

qk (15)

P is the proportion of positive performance statistics among the l tested strategies. In order to
determine the p−value of P under the null of no superior performance, we need to construct
its distribution under the null assumption that all performance statistics are equal to zero (i.e.
E (f) = 0). One important result proved by White (2000) is that the distribution n

1
2

¡
f −E (f)

¢
can be approximated by n

1
2

¡
f∗i − f

¢
where f∗i is a l× 1 vector of performance statistics (whose

single elements are denoted by f∗ki) recomputed from the ith bootstrap (i = 1, ...,N) of all l
conditional excess return time-series together in order to account for their contemporaneous
link9. For each bootstrap (i = 1, ..., N), we compute the following statistics:

q∗ki = 1 if f∗ki − fk ≥ 0 (k = 1, ..., l)

= 0 otherwise (16)

P ∗i =
1

l

lX
k=1

q∗ki (17)

9Series can also be blockbootstrapped in order to keep the autocorrelation of excess returns. We implemented
a blockbootstrap methodology with block length equal to n

1
4 (proposed by Hall et al., 1995) but the difference

between bootstrap and blockbootstrap is negligible in our tests.
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Collecting all P ∗i (i = 1, ..., N) and sorting them in ascending order yields an approximation of
the distribution of P under the null. Then, we find M such that P ∗M < P < P ∗M+1, and define
the reality check p-value (under the null hypothesis that the expected performance measure of
all strategies is equal to zero, i.e. E (f) = 0) as follows:

p− value = 1− M

N
(18)

To conclude, let us define the form of fkt+1 for our two performance measure based on the
Cornell measure and the Sharpe ratio. For the Cornell measure, we have:

fkt+1

³
Zt, bβt´ = er0kt+1 ³Zt, bβt´ (19)

where er0kt+1 is the zero-cost portfolio of the kth strategy defined in Equation (10). Performance
statistics based on the Sharpe ratio are computed by comparing the Sharpe ratio of the kth

strategy with the Sharpe ratio of an uninformed benchmark strategy denoted by 0. Follow-
ing Sullivan, Timmermann and White (1999) we denote by ht+1 a 2×1 vector containing the
following elements:

ht+1 =

µ
h1t+1
h2t+1

¶
=

µ erkt+1
(erkt+1)2

¶
(20)

Let us then define a function g (ht+1) as follows:

g =
h1t+1³

h2t+1 −
¡
h1t+1

¢2´ 12 (21)

Therefore the performance statistic computed at time t+ 1 takes the following form:

fkt+1

³
Zt, bβt´ = g

³
hkt+1

³
Zt, bβt´− h0t+1

³
Zt, bβt´´ (22)
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Table 1

Grouping of the predictive variables

Characteristics Related to asset prices Related to interest rates
Local variables 1 Dividend yield

Lagged stock index excess return
2 Short term interest rate

Term spread

Global variables 3 World index dividend yield
Lagged world index excess return

4 US short-term interest rate
US term spread
US default spread

Each instrument is classified according to its nature (related to asset prices or interest rates) and its
area of influence (global or local influence on capital markets). This procedure leads to different groups
numbered from 1 to 4.
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Table 2

Description of the four different sets of portfolio selection constraints

Name of the strategy Constraints
Free None

Positivity 0 6 wit 6 1 and
12X
i=1

wit 6 1

Diversification 0 6 wit 6 D

Variability |wit − wit−1| 6 L

Free consists in a free optimization, Positivity disallows short-selling. Diversification imposes diversifi-
cation on the various country weights and Variability forces the weights at two consecutive rebalancing
dates to be close to one another. D is a scalar fixing the weight upper-bound at each rebalancing dates
and L is a scalar defining the upper-bound of the weight difference absolute value at two consecutive
rebalancing dates.
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Table 3

Characteristics of conditional and unconditional strategies for different values of A

N◦ of
countries

Average country
weight mean

Average country
weight std dev. Turnover

A = 2 Uncond 8.7 40.5% 7.0% 25.4%
Cond 8.3 46.2% 9.9% 90.5%

A = 5 Uncond 8.2 34.6% 5.8% 18.6%
Cond 8.1 41.8% 9.9% 88.5%

A = 10 Uncond 8.0 26.3% 6.5% 14.3%
Cond 7.9 36.6% 9.2% 84.6%

All figures represent grand means over all conditional (168 possibilities) and unconditional strategies (24
possibilities). For a given strategy, the number of countries and the average country weight mean are
computed as averages across countries and across time. The average country weight standard deviation
is computed as the standard deviation of the average country weight computed at each rebalancing date
t. Turnover represents the average fraction of the portfolio modified at each rebalancing date t.
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Table 4

Comparison of conditional and unconditional strategies
for different values of A and no transaction costs

Excess mean Std deviation Sharpe ratio Final wealth
A = 2 Uncond 4.9% 32.0% 0.15 0.93

Cond 10.3% 33.7% 0.29 1.95
p-values
Cond vs Uncond 0.09∗ 0.06∗ 0.15 0.44
Cond vs Market 0.02∗ 0.00∗ 0.08∗ 0.50
Cond vs Equal 0.06∗ 0.00∗ 0.45 0.57

A = 5 Uncond 4.4% 20.2% 0.21 1.42
Cond 7.6% 25.9% 0.30 1.92
p-values
Cond vs Uncond 0.17 0.00∗ 0.32 0.49
Cond vs Market 0.03∗ 0.00∗ 0.11 0.42
Cond vs Equal 0.13 0.00∗ 0.48 0.54

A = 10 Uncond 4.0% 13.5% 0.27 1.61
Cond 5.9% 20.3% 0.30 1.78
p-values
Cond vs Uncond 0.24 0.00∗ 0.52 0.53
Cond vs Market 0.08∗ 0.00∗ 0.16 0.32
Cond vs Equal 0.23 0.00∗ 0.47 0.50

B&H Market 0.6% 14.5% 0.04 0.93
Equal 3.9% 13.9% 0.28 1.54
GDP 3.3% 13.5% 0.25 1.43

All figures represent averages over all conditional (168 possibilities) and unconditional strategies (24
possibilities). The excess return, standard deviation and Sharpe ratio are annualized. The final wealth
of each strategy is computed by assuming that one currency unit is invested at the beginning of the
period. For comparative purpose, three buy and hold strategies are presented: Market is the value-
weighted portfolio of the 12 countries, Equal the equally-weighted portfolio and GDP the GDP-weighted
portfolio. The p-values under the null assumption that the statistics differences between the conditional
and unconditional (as well as buy and hold) strategies are equal to zero are obtained by boostrapping
the excess return time-series of all strategies 1’000 times. Asterisk denotes 10% significance.
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Table 5

Comparison of conditional and unconditional strategies
for different values of A and medium transaction costs

Excess mean Std deviation Sharpe ratio Final wealth
A = 2 Uncond 2.5% 32.1% 0.08 0.70

Cond 8.2% 33.7% 0.23 1.46
p-values
Cond vs Uncond 0.10∗ 0.06∗ 0.15 0.42
Cond vs Market 0.08∗ 0.00∗ 0.16 0.54
Cond vs Equal 0.16 0.00∗ 0.58 0.71

A = 5 Uncond 2.7% 20.3% 0.13 1.08
Cond 5.5% 25.9% 0.22 1.45
p-values
Cond vs Uncond 0.19 0.00∗ 0.31 0.48
Cond vs Market 0.10∗ 0.00∗ 0.21 0.43
Cond vs Equal 0.31 0.00∗ 0.64 0.76

A = 10 Uncond 2.6% 13.6% 0.18 1.27
Cond 3.9% 20.3% 0.21 1.35
p-values
Cond vs Uncond 0.32 0.00∗ 0.53 0.57
Cond vs Market 0.17 0.00∗ 0.25 0.37
Cond vs Equal 0.49 0.00∗ 0.66 0.76

B&H Market 0.6% 14.5% 0.04 0.93
Equal 3.9% 13.9% 0.28 1.54
GDP 3.3% 13.5% 0.25 1.47

All figures represent averages over all conditional (168 possibilities) and unconditional strategies (24
possibilities). The excess return, standard deviation and Sharpe ratio are annualized. The final wealth
of each strategy is computed by assuming that one currency unit is invested at the beginning of the
period. For comparative purpose, three buy and hold strategies are presented: Market is the value-
weighted portfolio of the 12 countries, Equal the equally-weighted portfolio and GDP the GDP-weighted
portfolio. The p-values under the null assumption that the statistics differences between the conditional
and unconditional (as well as buy and hold) strategies are equal to zero are obtained by boostrapping
the excess return time-series of all strategies 1’000 times. Asterisk denotes 10% significance.
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Table 6

Percentage of positive Cornell measure for different values of A

Grouping N◦ Risk aversion
2 5 10

Total
168 40.5% (0.62) 36.9% (0.65) 30.4% (0.74)

Predictive variables
Local 24 20.8% (0.76) 12.5% (0.85) 4.2% (0.94)
Global 24 62.5% (0.36) 45.8% (0.50) 37.5% (0.60)
Asset 24 29.2% (0.62) 25.0% (0.68) 37.5% (0.55)
GassetLinterest 24 37.5% (0.60) 54.2% (0.43) 33.3% (0.64)
LassetGinterest 24 45.8% (0.50) 41.7% (0.56) 29.2% (0.65)
Interest 24 83.3% (0.14) 75.0% (0.25) 58.3% (0.42)
All 24 4.2% (0.96) 4.2% (0.94) 12.5% (0.86)

Selection constraints
Free 42 14.3% (0.82) 9.5% (0.85) 2.4% (0.94)
Positivity 42 30.9% (0.87) 30.9% (0.84) 35.7% (0.74)
Diversification 42 57.1% (0.39) 64.3% (0.32) 52.4% (0.47)
Variability 42 59.5% (0.37) 42.9% (0.55) 31.0% (0.68)

Estimation window
Expanding 60 28 53.6% (0.69) 50.0% (0.70) 28.6% (0.86)
Expanding 80 28 39.3% (0.70) 28.6% (0.70) 28.6% (0.84)
Expanding 100 28 28.6% (0.67) 28.6% (0.64) 14.3% (0.80)
Rolling 60 28 46.4% (0.68) 35.7% (0.62) 21.4% (0.52)
Rolling 80 28 39.3% (0.66) 39.3% (0.60) 42.9% (0.53)
Rolling 100 28 35.7% (0.64) 39.3% (0.60) 46.4% (0.52)

The 168 strategies are classified according to the three sets of exogenous specifications (predictive vari-
ables, selection constraints and estimation window). Figures into parentheses represent the White’s
p-value under the null assumption that all conditional strategies have a zero Cornell measure. They are
computed by bootstrapping the excess return time-series of all strategies 1’000 times.
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Table 7

Percentage of positive Sharpe ratio differential
for A equal to 5 and no transaction costs

Grouping N◦ Uncond B&H
50% 75% Market Equal

Total
168 79.8% (0.00)∗ 69.0% (0.05)∗ 94.0% (0.00)∗ 60.1% (0.12)

Predictive variables
Local 24 87.5% (0.00)∗ 70.8% (0.08)∗ 95.8% (0.00)∗ 62.5% (0.15)
Global 24 83.3% (0.00)∗ 66.7% (0.03)∗ 100.0% (0.00)∗ 58.3% (0.14)
Asset 24 58.3% (0.20) 41.7% (0.75) 75.0% (0.00)∗ 25.0% (0.98)
GassetLinterest 24 100.0% (0.00)∗ 91.7% (0.00)∗ 100.0% (0.00)∗ 91.7% (0.00)∗

LassetGinterest 24 79.2% (0.00)∗ 79.2% (0.02)∗ 100.0% (0.00)∗ 58.3% (0.15)
Interest 24 62.5% (0.02)∗ 58.3% (0.14) 87.5% (0.00)∗ 50.0% (0.48)
All 24 87.5% (0.00)∗ 75.0% (0.03)∗ 100.0% (0.00)∗ 75.0% (0.02)∗

Selection constraints
Free 42 61.9% (0.14) 45.2% (0.58) 85.7% (0.00)∗ 38.1% (0.81)
Positivity 42 76.2% (0.00)∗ 64.3% (0.17) 97.6% (0.00)∗ 47.6% (0.57)
Diversification 42 97.6% (0.00)∗ 90.5% (0.00)∗ 100.0% (0.00)∗ 83.3% (0.00)∗

Variability 42 83.3% (0.00)∗ 76.2% (0.02)∗ 92.8% (0.00)∗ 71.4% (0.06)∗

Estimation window
Expanding 60 28 75.0% (0.00)∗ 71.4% (0.04)∗ 89.3% (0.00)∗ 67.8% (0.09)∗

Expanding 80 28 71.4% (0.00)∗ 60.7% (0.07)∗ 89.3% (0.00)∗ 60.7% (0.18)
Expanding 100 28 75.0% (0.00)∗ 60.7% (0.16) 92.9% (0.00)∗ 53.6% (0.28)
Rolling 60 28 89.3% (0.00)∗ 67.8% (0.08)∗ 100.0% (0.00)∗ 50.0% (0.25)
Rolling 80 28 89.3% (0.00)∗ 82.1% (0.03)∗ 96.4% (0.00)∗ 67.9% (0.09)∗

Rolling 100 28 78.6% (0.00)∗ 71.4% (0.06)∗ 96.4% (0.00)∗ 60.7% (0.18)

The 168 specifications are classified according to the three sets of exogenous specifications (predictive
variables, selection constraints and estimation window). Four uninformed benchmarks are used. The
two unconditional benchmarks are located at 50 and 75% top quantiles of the ranking based on the
Sharpe ratios of all unconditional strategies. The two buy and hold benchmarks are the value-weighted
(Market) and equally-weighted portfolios (Equal). Figures into parentheses represent the White’s p-value
under the null assumption that all conditional strategies have a zero Sharpe ratio differential. They are
computed by bootstrapping the excess return time-series of all strategies 1’000 times. An asterisk denotes
10% significance.
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Table 8

Percentage of positive Sharpe ratio differential
for A equal to 5 and medium transaction costs

Grouping N◦ Uncond B&H
50% 75% Market Equal

Total
168 75.0% (0.00)∗ 69.6% (0.04)∗ 85.2% (0.00)∗ 38.1% (0.92)

Predictive variables
Local 24 79.2% (0.00)∗ 75.0% (0.08)∗ 91.7% (0.00)∗ 33.3% (0.91)
Global 24 79.2% (0.00)∗ 66.7% (0.02)∗ 91.7% (0.00)∗ 41.7% (0.74)
Asset 24 50.0% (0.39) 45.8% (0.69) 62.5% (0.02)∗ 8.3% (1.00)
GassetLinterest 24 95.8% (0.00)∗ 91.6% (0.00)∗ 100.0% (0.00)∗ 66.6% (0.11)
LassetGinterest 24 79.2% (0.00)∗ 75.0% (0.04)∗ 79.2% (0.00)∗ 41.7% (0.79)
Interest 24 62.5% (0.00)∗ 58.3% (0.12) 79.2% (0.00)∗ 33.3% (0.98)
All 24 79.2% (0.00)∗ 75.0% (0.02)∗ 91.7% (0.00)∗ 41.7% (0.60)

Selection constraints
Free 42 50.0% (0.42) 45.2% (0.72) 61.9% (0.08)∗ 14.3% (1.00)
Positivity 42 73.8% (0.00)∗ 61.9% (0.19) 90.5% (0.00)∗ 26.2% (1.00)
Diversification 42 97.6% (0.00)∗ 95.2% (0.00)∗ 100.0% (0.00)∗ 66.7% (0.01)∗

Variability 42 78.6% (0.00)∗ 76.2% (0.00)∗ 88.1% (0.00)∗ 45.2% (0.58)

Estimation window
Expanding 60 28 71.4% (0.00)∗ 71.4% (0.03)∗ 78.6% (0.00)∗ 50.0% (0.89)
Expanding 80 28 67.8% (0.00)∗ 64.2% (0.11) 82.2% (0.00)∗ 35.7% (0.97)
Expanding 100 28 67.8% (0.00)∗ 60.7% (0.16) 82.2% (0.00)∗ 32.2% (0.99)
Rolling 60 28 82.2% (0.00)∗ 64.2% (0.11) 89.3% (0.00)∗ 28.6% (0.94)
Rolling 80 28 85.7% (0.00)∗ 85.7% (0.03)∗ 89.3% (0.00)∗ 46.4% (0.77)
Rolling 100 28 75.0% (0.00)∗ 71.4% (0.06)∗ 89.3% (0.00)∗ 35.7% (0.90)

The 168 specifications are classified according to the three sets of exogenous specifications (predictive
variables, selection constraints and estimation window). Four uninformed benchmarks are used. The
two unconditional benchmarks are located at 50 and 75% top quantiles of the ranking based on the
Sharpe ratios of all unconditional strategies. The two buy and hold benchmarks are the value-weighted
(Market) and equally-weighted portfolios (Equal). Figures into parentheses represent the White’s p-value
under the null assumption that all conditional strategies have a zero Sharpe ratio differential. They are
computed by bootstrapping the excess return time-series of all strategies 1’000 times. An asterisk denotes
10% significance.
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Table 9

Composition of the 30 worst and best conditional models across the different
specifications for different values of A and no transaction costs

Grouping Risk aversion
2 5 10

Worst Best Worst Best Worst Best
Predictive variables
Local 3.3% 13.3% 6.6% 10.0% 13.3% 6.6%
Global 20.0% 10.0% 20.0% 13.3% 3.3% 13.3%
Asset 30.0% 10.0% 30.0% 0.0% 26.6% 0.0%
GassetLinterest 6.6% 20.0% 3.3% 30.0% 3.3% 30.0%
LassetGinterest 16.6% 3.3% 6.6% 13.3% 6.6% 20.0%
Interest 20.0% 20.0% 20.0% 16.6% 33.3% 13.3%
All 3.3% 26.0% 13.3% 16.6% 13.3% 16.6%

Selection constraints
Free 70.0% 30.0% 56.6% 30.0% 50.0% 30.0%
Positivity 0.0% 6.6% 13.3% 0.0% 16.6% 3.3%
Diversification 0.0% 10.0% 0.0% 13.3% 6.6% 6.6%
Variability 30.0% 53.0% 30.0% 56.6% 26.6% 56.6%

Estimation window
Expanding 60 16.6% 23.3% 30.0% 26.6% 23.3% 26.6%
Expanding 80 16.6% 16.6% 13.3% 16.6% 16.6% 20.0%
Expanding 100 16.6% 16.6% 13.3% 16.6% 20.0% 20.0%
Rolling 60 23.3% 13.3% 23.3% 10.0% 20.0% 6.6%
Rolling 80 13.3% 10.0% 13.3% 16.6% 6.6% 16.6%
Rolling 100 13.3% 20.0% 16.6% 13.3% 13.3% 10.0%

The 168 conditional strategies are ranked according to their final wealth and the 30 worst and best
strategies are selected. For each of these two groups, we compute the percentage of strategies which use
the different exogenous specifications across the three sets (predictive variables, selection constraints and
portfolio selection).
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Table 10

Descriptive statistics of 12 Datastream monthly excess returns

Excess mean Std deviation Skewness Kurtosis Normality test (p-value)
Australia 4.7% 12.9% -0.06 2.70 0.63
Belgium 3.7% 16.3% -0.34 4.17 0.00∗

Canada 5.5% 14.3% -0.45 4.58 0.00∗

Denmark 5.1% 18.3% -0.23 2.95 0.44
France 5.0% 19.1% -0.18 3.36 0.43
Germany 2.3% 19.6% -0.44 3.61 0.02∗

Italy 2.0% 23.9% 0.53 3.65 0.00∗

Japan -4.4% 20.7% 0.26 4.12 0.00∗

Netherlands 6.0% 17.4% -0.50 5.06 0.00∗

Switzerland 7.9% 17.6% -0.32 7.48 0.00∗

UK 2.8% 15.0% -0.15 3.70 0.14
USA 7.2% 14.6% -0.34 3.34 0.13

Descriptive statistics of 12 Datastream country index monthly excess returns (in local currency) be-
tween January 1990 and September 2004 (176 datapoints). The excess mean and standard deviation are
annualized. The last column shows the p-value under the null assumption of normality based on the
Bera-Jarque test. An asterisk indicates 10% significance.
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Table 11

Correlation matrix of 12 Datastream monthly excess return

Aus. Bel. Can. Den. Fra. Ger. Ita. Jap. Net. Swi. UK USA
Australia 1.00
Belgium 0.50 1.00
Canada 0.58 0.50 1.00
Denmark 0.55 0.67 0.58 1.00
France 0.55 0.72 0.66 0.66 1.00
Germany 0.57 0.69 0.64 0.73 0.85 1.00
Italy 0.36 0.57 0.54 0.58 0.72 0.66 1.00
Japan 0.40 0.27 0.39 0.25 0.37 0.31 0.25 1.00
Netherlands 0.61 0.79 0.69 0.72 0.84 0.84 0.63 0.38 1.00
Switzerland 0.57 0.76 0.66 0.66 0.74 0.76 0.58 0.41 0.83 1.00
UK 0.65 0.69 0.66 0.65 0.76 0.70 0.57 0.36 0.80 0.78 1.00
USA 0.56 0.57 0.74 0.56 0.65 0.63 0.46 0.37 0.69 0.65 0.72 1.00

Correlation matrix of 12 national Datastream country index monthly excess returns (in local currency)
between January 1990 and September 2004 (176 datapoints).
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Figure 1

Distribution of the final wealth of conditional strategies for A equal to 5
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(a) No transaction costs

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Conditional

(b) Low transaction costs
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(c) Medium transaction costs
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(d) High transaction costs

Distribution of final wealth faced by an investor who randomly picks up one conditional strategy
(out of the 168 possibilities) and invests one currency unit at the beginning of the period in
January 1990. The distributions are computed using a standard Gaussian Kernel.
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