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Abstract

This paper provides a theoretical and an empirical analysis of the Risk
Appetite Index (RAI), a measure of investors’ risk aversion proposed
by Kumar and Persaud (2001, 2002). Our theoretical analysis shows
that the RAI distinguishes between risk and risk aversion only under
restrictive assumptions on the distribution of returns and the nature of
the shocks affecting assets’ riskiness. Although these assumptions are
theoretically restrictive, we need to verify empirically to what extent
they alter the behavior of the RAI. We do this by comparing the RAI
with a measure of risk aversion “in the short-term”, which we derive
from the estimation of a CAPM — a model that does not require those
restrictive assumptions. Using data of international asset prices in
the last six years, we find that estimates are surprisingly similar. We
explain this result by proving that under a certain condition the RAI
may be regarded as a robust estimator of the risk aversion parameter
in a CAPM. This condition requires the ratio between the variance of
assets’ returns and the variance of assets’ riskiness to be approximately
constant — a condition that is met in our sample.
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1 Introduction

The behavior of international asset prices in last two years has been often
explained on the basis of changes in risk aversion. For instance, according
to the IMF, the decline in equity prices recorded between March 2002 and
mid-March 2003 was mostly due to an increase in investors’ risk aversion
connected with the geopolitical tensions that ended up with the war in Iraq
(IMF (2003a)). By the same token, both the IMF and the BIS explained
the subsequent recovery in equity prices with a decline in risk aversion (see
IMF (2003b) and BIS (2004)). These explanations have been supported
empirically with a variety of indicators, usually created by private financial
analysts.

The positive attitude of market practitioners towards measuring risk
aversion contrasts sharply with the general skepticism that prevails in the
academic research. For instance, in his classical book on the economics
of uncertainty, Laffont (1993) has an entire chapter on ‘Measuring Risk
Aversion and Risk’, without a single reference to empirical works!" In his
seminal contribution to the theory of risk-bearing, Arrow (1970) has inferred
the value of risk aversion parameters on the basis of the properties of Von
Neumann and Morgenstern utility functions.? Then, in theoretical models
economists have typically used specific utility functions (generally with a
constant absolute or relative risk aversion), mainly because of mathematical
convenience. This skepticism derives not only from the unobservability of
individuals’ preferences, but also from the observational equivalence between
risk and risk aversion: in fact, an increase (decrease) in either of them causes
asset prices to decline (rise) and risk premia to increase (decrease).

In the financial community, instead, market practitioners have developed
a number of indicators based on the behavior of asset prices, that they
interpret as measures of investors’ risk aversion. Most, if not all, of these
indicators, however, do not necessarily reflect changes in risk aversion.

In this literature, one can distinguish between two main classes of indi-
cators.® One class is based on weighted averages of risk premia on a wide
range of assets, including, e.g., technology stocks, industrial countries’ junk
bonds and emerging countries’ currencies.! The basic hypothesis is that if

n fact, Laffont concludes: “It is of course difficult to obtain sufficient information
about an agent’s preferences, to know whether his absolute risk aversion increases or de-
creases (since this requires information about the third derivative of his utility function).”
(Laffont (1993, p. 24), cited from Hartog et al. (2002)).

?Starting from the boundedness property of utility functions, Arrow (1970) concludes
that the relative risk aversion should be approximately 1 — a condition implying that
preferences are represented by a logarithm function, as first suggested by Bernoulli (1738).

3For a brief survey of the indicators used by private banks see IMF (2003, Box 3.1).

*An example is the well known “Liquidity, Credit, and Volatility Index” released by
the J.P. Morgan Chase in October 2002, and recently revised at the IMF by Dungey et
al. (2003).



the cross section of assets is sufficiently large, then the underlying overall
risk may be regarded as constant across time. In this case, changes in the
weighted average of risk premia may be attributed to changes in risk aver-
sion. This hypothesis, however, is highly questionable, especially in periods
of financial turmoil, when international global integration is likely to spill
over the effects of idiosyncratic country shocks.

Another class of measures is based on options prices. Options provide
a spectrum of observations for each expiry date (one observation for each
quoted strike price). This multiplicity of prices allows to construct prob-
ability density functions (PDFs) representing forward-looking forecasts of
the distribution of prices of the underlying asset. The PDFs estimated from
options prices are risk-neutral and do not provide accurate forecasts. Then,
one can attribute the difference between predicted and actual values to the
true risk aversion of the representative investor. Hence, a measure of risk
aversion can be obtained by comparing risk-neutral PDFs with historical
distributions of prices.” While this procedure may be correct on average, in
specific periods of time investors may expect risk to change with respect to
the average risk incorporated in historical data. This will affect the PDF's,
thereby distorting the measure of risk aversion.’

Thus, previous indicators may fail to distinguish between risk and risk
aversion. Recently, Kumar and Persaud (2001, 2002) have made an attempt
to break the observational equivalence between risk and risk aversion by
exploiting a special feature of asset pricing models. According to these
authors, pricing models are such that changes in risk aversion modify the
rank of assets’ expected returns relative to the rank of assets’ riskiness, whilst
changes in assets’ riskiness do not affect the relative ranks. Then, they build
an indicator of investors’ risk aversion, called Risk Appetite Index (RAI),
based on the rank correlation between the expected excess return and the
riskiness of a cross section of assets.

In this work, we examine the RAI both theoretically and empirically.
In the theoretical part, we refine a previous analysis of Misina (2003), who
gathers the conditions under which the RAI can distinguish between risk and
risk aversion into two propositions (Section 2). Next, building on Kumar
and Persaud (2002) and Misina (2003), we examine the RAI in the context
of the Capital Asset Pricing Model (CAPM) (Section 3).” We focus on the

’See Bliss and Panigirtzoglou (2004) and Grande and Pericoli (2004).

%The academic literature has also followed other lines of reaserch. Some measures of risk
aversion are obtained from survey data on household asset holdings, as in the tradition of
Friend and Blume (1975) (Guiso and Paiella (2003) is a recent example using survey data).
Measures drawing on experimental data also have a long history (see, e.g., Gordon et al.
(1975) or the recent paper by Bossaerts and Plott (2002)). Finally, another important
stream of research is based on the estimation of the Capital Asset Pricing Model, which
we survey in Section 4.

"Pericoli and Sbracia (2004) show that these conditions are not fulfilled, even in the
ad hoc asset pricing model proposed by Kumar and Persaud (2001).



CAPM because this model is the prototype of modern asset pricing theory.
Its main prediction, that equilibrium expected returns are proportional to
their covariance with the aggregate risk, is shared with virtually any other
pricing model that has been taken to the data.® We show that the RAT dis-
tinguishes between changes in assets’ riskiness and changes in investors’ risk
aversion only under restrictive assumptions on the distribution of returns
and the nature of the shocks affecting assets’ riskiness. Specifically, given
a sufficiently large number of assets, we need to assume that returns are
independent and that the shocks affecting assets’ riskiness are idiosyncratic.

Although these assumptions are theoretically restrictive, we need to ver-
ify empirically to what extent they alter the behavior of the RAI. We can
do this by comparing the RAI with a measure of risk aversion “in the short-
term”, which we derive from the estimation of a CAPM — a model that does
not require either independent returns or specific assumptions on the nature
of the shocks. Using data on international stock prices during the last six
years, we show that the two estimates are surprisingly similar. Therefore,
by focusing on the statistical properties of the RAI, we prove that under a
certain condition this indicator may be regarded as a robust estimator of the
risk aversion parameter in a CAPM. This condition, which requires the ratio
between the variance of assets’ returns and the variance of assets’ riskiness
to be approximately constant, is met in our sample (Section 4). Section 5
concludes.

2 Theoretical foundations

The first element needed in order to build the RAI is the expected excess
return (excess return hereafter) on each asset ¢, that we denote with R¢”,
i = 1,...,n. The excess return R;* is the difference between the expected
return on the risky asset i, E (R;), and the return on the risk free asset,

Rf:9
R = E(R;) — Ry . (1)

The expected return on asset i, in turn, can be viewed as the difference
between its expected price plus the expected dividend, denoted with L;,
and its current price B;:

E(Ri)=Li- P, (2)

8Generally, it is the meaning of aggregate risk that differs across models: in the stan-
dard CAPM it is the return of the market portfolio; in Lucas (1978) and Breeden (1979)
it is aggregate consumption.

9Hereafter E denotes the expectation operator, Var the variance operator, Cov the
covariance operator and Corr the correlation operator. All the operators refer to uncon-
ditional moments.




where both L; and P; are expressed in terms of logarithms.!’ In asset

pricing models, given a change in a parameter the adjustment occurs through
current prices that, in turn, make expected and excess returns change. Thus,
the adjustment in excess returns occur through changes — with the opposite
stgn — in current asset prices.

The second element in the RAT is the riskiness of each asset i, that we
denote with ;. In the following sections, the parameter \; will be defined
precisely according to the considered asset pricing model. We will see that
such definition may turn out to be critical in order to assess the properties of
the pricing model and, in turn, the appropriateness of the RATI as a measure
of market’s risk aversion.

As pointed out by Misina (2003), the RAI stems from an important prop-
erty. We say that a change in a parameter of the asset pricing model that
affects assets’ excess returns yields a rank effect if the following condition
holds:

if \i > \; = either AR" > AR Vi# j or AR;* < AR} Vi#j. (3)

Property (3) states that the “rank effect” obtains when a change in a param-
eter of the pricing model determines changes in each asset’s excess return
that are monotone (either increasing or decreasing) in the riskiness of each
asset.!! Definition (3) leaves indeterminate both the sign of the change in
expected returns (which can be positive or negative) and the sign of the
monotonicity relationship between the change in excess return and the risk-
iness of each asset (increasing or decreasing). These indeterminacies give
origin to four possible cases. We argue below that in all possible cases,
property (3) affects the rank correlation between excess returns and risks in
a cross section of assets.

In general, there are several measures of rank correlation between two
variables (see Stuart and Ord (1991, Chapter 26) for a brief overview). Fol-
lowing Kumar and Persaud (2001, 2002) in this paper we use Spearman’s
measure of rank correlation (denoted with p®) which takes values in the in-
terval [—1,1]; specifically, p* =1 (p® = —1) when the rank of the values of
one variable is the same as (inverse of) the rank of the values of the other
variable.

In order to understand why the rank effect affects the rank correlation,
suppose that, before the rank effect shows up, such correlation is less than

10We have adopted the standard definition of expected returns (see, e.g., Cochrane
(2001, Chapter 1)). Kumar and Persaud (2001), instead, define L; as the long-run price
of asset i.

"'The rank effect as defined by property (3) generalizes the one stated by Misina (2003),
who considers only changes in excess returns that are increasing in assets’ riskiness. Our
definition is more relevant for the analysis of the RAI, because we can show that also
decreasing changes in excess returns modify the rank correlation between assets’ excess
returns and risks.



1. This assumption means that there are at least two assets, say assets
¢ and j, such that A; > A; and R{* < Rj*. Hence, consider a change
in a parameter that causes a rank effect and, for now, assume that this
effect gives rise to an increase in excess returns (i.e. AR and AR are
both positive). Suppose also that property (3) holds because we observe
increasing changes in excess returns; namely, AR{® > AR?“’ > 0. Then, if
the increase in the excess return of asset ¢ is sufficiently larger than the one of
asset j, it can reverse the relationship between excess returns into Rf* > RZ”,
thereby strengthening the rank correlation between excess returns and risks.
Analogously, suppose that the rank effect gives rise to a decrease in excess
returns (i.e. AR" and ARS® are both negative) and that property (3) holds
with ARS" < AR7* < 0; then, if the decrease in R is sufficiently larger
(in absolute terms) than the decrease in R$”, the relationship between the
excess returns on the two assets can be reversed into Rf* > R, and this
will strengthen the rank correlation between excess returns and risks.

By the same token, assume that the rank correlation between excess
returns and risks is larger than -1, so that there exist at least two assets,
say assets ¢ and j, such that A; > A; and Rf* > RS*. Assume also that
the change in the parameter determines a rank effect with decreasing and
positive excess returns (i.e., \; > A\; and AR§* < ARSY with AR, ARS* >
0). Then, the resulting rank correlation may weaken, as the change in excess
returns can turn the relationship between R{* and RS into R{* < RS™. The
same result obtains if AR < ARS" and ARF™ and AR;" are both negative.

Thus, the rank effect — as defined by condition (3) — tends to modify
(either strengthen or weaken) the rank correlation between excess returns
and risks.

Now suppose that in an asset pricing model property (3) is fulfilled only
by changes in the risk aversion parameter, whilst changes in risk do not fulfill
it. Then, we could exploit this property in order to discriminate between
changes in risk and changes in risk aversion. Specifically, changes in asset
prices that turn out to modify the rank correlation between excess returns
and risks will be due to changes in risk aversion; moreover, if changes in
asset prices do not modify the rank correlation between excess returns and
risks, then they can be attributed to changes in risks.

Following Misina (2003), the conditions under which the RAI can be
used to discriminate between changes in risk and changes in risk aversion
can be conveniently gathered into two propositions. The first proposition
specifies that changes in risk aversion have a rank effect; namely:

Proposition 1 A change in investors’ risk aversion has a rank effect on
excess returns across different assets.

Of course, this proposition cannot be verified empirically, since risk aver-
sion is an unobservable parameter. Moreover, we cannot use its consequences



on the rank correlation between excess returns and risks to detect changes
in risk aversion because, in principle, a rank effect can show up for reasons
other than changes in risk aversion. Therefore, we can introduce a second
proposition that addresses both issues. Specifically, we can assume that only
changes in risk aversion have a rank effect, or, equivalently, if we assume that
risk and risk aversion are the sole parameters of the pricing model that can
change over time, then the second proposition states that changes in risk do
not have a rank effect:

Proposition 2 A change in the riskiness of assets does not have a rank
effect on excess returns across different assets.

Thus, when both propositions hold, the rank effect can be used to break
the observational equivalence between risk and risk aversion. Specifically,
we can use the rank correlation between excess returns and risks to detect
changes in investors’ risk aversion.

In the following section we will examine whether Propositions 1 and 2
can be proved in the context of a standard asset pricing models such as the

CAPM.

3 The Risk Appetite Index and the CAPM

In Kumar and Persaud (2002), the authors motivate the RAI by considering
changes in risk and in risk aversion in the CAPM. However, they focus only
on the induced changes in the excess return on the market portfolio (i.e. on
the optimal portfolio of the representative investor) and do not calculate
explicitly the effect of the parameter changes on the excess return on each
risky asset. The latter calculations are critical to verify whether Propositions
1 and 2 hold and, therefore, to establish whether the RAI can be a measure
of changes in risk aversion.

Kumar and Persaud (2002) start their analysis with a well-known rela-
tionship between the excess return and the variance of the market portfolio.
For the sake of simplicity, suppose that there are only risky assets in the
market. If investors prefer frontier portfolios — defined as the portfolios
with the minimum variance in the class of the portfolios with the same ex-
pected rate of return — then the following relationship holds (see Huang and

Litzenberger (1988, Chapter 3)):
O = [E (Bp)]* +0E (Rm) + ¢ , (4)

where R, is the stochastic return on the market portfolio, o2, denotes its
variance, and a, b and ¢ are constants which depend on the expected returns
on each risky asset and the variance-covariance matrix of asset returns.
Equation (4) defines the portfolio frontier — i.e. the locus of all frontier



portfolios — which is a parabola in the 02,-F (R,,) space (the Risk-Return
space).

Return

Risk
Appetite 1.

Risk
A ppetite 2

M arket
Portfolio 2

Risk

Figure 1: Effect of a change in the risk aversion

The slope of the curve (4) is the investors’ risk aversion (see Kumar
and Persaud (2002) or Cochrane (2001, Chapter 5)). Hence, changes in risk
aversion determine a shift of the optimal portfolio that modifies both the
expected return and the variance of the market portfolio, as illustrated in
Figure 1.

Kumar and Persaud (2002) also consider an alternative scenario in which
a simultaneous change in the riskiness of all assets occurs. However, they
focus a very specific change: namely, one that gives rise only to a change in
a single parameter of equation (4), that is the parameter ¢ of the parabola.
If ¢ changes, say it goes from ¢ to ¢ > ¢, it modifies only the riskiness of the
market portfolio, without changing its expected return. Figure 2 illustrates
this effect.

By comparing the different consequences of these two scenarios, the au-
thors conclude that changes in risk aversion modify the rank correlation
between expected returns and risks, while a simultaneous increase in the
riskiness of all assets does not affect it. This claim motivates the RAI as a
measure of market’s risk aversion.
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Figure 2: Effect of a simultaneous change in the riskiness of all assets

However, by focusing only on the implications on the market portfolio
of parameter changes, Kumar and Persaud neglect the implications on the
excess returns of each risky assets, which are essential for the validity of
the RAI. For instance, in the case represented in Figure 1, a change in the
return of the market portfolio does not necessarily imply that assets’ excess
returns change monotonically in their riskiness, as Proposition 1 requires.
Similarly, the case represented in Figure 2 does not exclude that the change
in the assets’ excess returns yields a rank effect, as Proposition 2 establishes.

Thus, even within the very specific change in assets’ riskiness considered
by Kumar and Persaud (2002), the validity of the RAI remains questionable.
Therefore, in the following section we examine analytically the effect of
changes in risk and risk aversion and we show that the authors’ conclusions
are, in general, incorrect.

3.1 The CAPM with exponential utility and normal returns

Following Cochrane (2001, Chapter 9) and Misina (2003), in this section
we verify whether Propositions 1 and 2 hold in a standard CAPM with
multivariate normal returns and identical investors with Constant Absolute
Risk Aversion (CARA) preferences. Appendix A.1 will further show that,
if we focus on an appropriate measure of risk aversion, then a more general
CAPM with heterogeneous agents with risk averse preferences would provide
the same conclusions as those obtained with the simple CAPM analyzed in
this section.



Let us consider a single consumer, interpreted as a representative agent
of a large number of identical consumers, with preferences represented by

the CARA utility:
u(C) = —e 77, (5)

where 7y is the Arrow-Pratt coefficient of absolute risk aversion.

This representative investor has initial wealth W, which can be splitted
between a risk free asset paying Ry and a set of n risky assets paying a
stochastic return R = (Ry, ..., Ry). Let a = (a1, ..., a,) denote the amount
of wealth invested in each asset ¢ with a; € R, Vi = 1,...,n. The budget
constraint then implies:

W =ay+ Z aj , (6)
i=1
while consumption will be given by:!?
C’:afRf—}—ZaiRd . (7)

i=1
We also assume that asset returns are multivariate normally distributed
with mean E (R) = (E (R1), ..., E (Ry)) and variance-covariance matrix X:
R~ N(E(R),) . (8)

The hypothesis (8) implies that consumption, which is an affine transfor-
mation of multivariate normal returns, will be (univariate) normally dis-
tributed:

C~ N(:UJCa 0—%‘) ’
with g = ayRy + d’E(R) and % = a’Sa. Hence, using a property of
normal distributions we can write:

2

Eu(C)]=FE (—6770) = _e*wCJr—”’;ac .

We can now solve the investors’ maximization problem:

2

max {—exp [—'y (afRy +d E(R)) + %G’Ea} } : 9)
af,a

12We are implicitly assuming a two-period framework where agents invest in the first
period, and, in the second period, returns are distributed and consumption occurs.

10



subject to the budget constraint (6). Using the constraint (6) we obtain
ay =W —a'l. In addition, since the exp (.) is a monotonic function, we can
rewrite the problem (9) as:

2
max {’y (Ry (W —d'1l) + dE(R)) — %Q’Ea} .
al
First order conditions imply:

7(=Rfl+ E(R)) —7*Za=0.

Therefore: E(R) — 1Ry = y¥a, where @ is the vector whose elements @; are
the optimal amounts of wealth invested in each risky asset ¢, and where 1 is
a vector of ones. It follows that the solution of the problem (9) is:

a= 2—1M ) (10)

v

Of course, the budget constraint (6) implies that the optimal amount of
wealth invested in the risk free asset is: @y = W — 1'a. It is important
to note that: (i) the concavity of the utility function (5) implies that the
solution (10) is unique; (i) each parameter @; is a solution of the problem
for given parameter values Ry, v and ¥, and for given expected returns
E(R).

Thus, the total return on investors portfolio is @s Ry + @ R, where the
latter addendum is the return on the risky portfolio, which we denote by R,,.
Of course, as investors have the same preferences, they will also hold the
same risky portfolio; in other words, Ry, is the return on the risky market
portfolio. Note also that the assumption of CARA preferences implies that
the amount invested in each risky asset is independent from wealth. Hence,
if investors were heterogeneous in their level of wealth, they would buy the
same amounts of risky assets and different amounts of the risk free asset,
the latter depending on their level of wealth.

In order to obtain the standard formulation of the CAPM, note that:
Cov(R,R;,) = Cov(R,@R) = Xa. Denote with R®" the vector of the
excess returns on each asset, i.e. R = E(R) — 1Ry; analogously, denote
with RS the excess return to the market portfolio, i.e. RSy = E(R,;,) — Ry.
Then, rearranging expression (10), we obtain:

R =~.Cov(R,Ry,) . (11)

3.2 The rank effect

We can now verify whether Propositions 1 and 2 hold; i.e. whether changes
in the risk aversion parameter yield a rank effect (Proposition 1), whilst
changes in risk do not cause a rank effect (Proposition 2).

11



We have noted above that the optimal coefficients @ defined by (10),
from which equation (11) originates, represent the unique solution of the
investors’ problem (9) for given parameters Ry, v and X, and for given
expected returns. Now suppose that investors hold the optimal portfolio
(a@y,@’) with rate of return a;R; + @ R. We can ask what happens when
one parameter changes. In equation (10), optimal quantities are obtained
for given prices. Then, in this model only one between prices and quantities
can change. Of course, it is reasonable to assume that, for a given optimal
allocation (@y,a), the adjustment after a change in a parameter will occur
through prices — i.e. through the excess returns R{*. Recall, also, that
for each asset i an increase (decrease) in R{* occurs through a decrease
(increase) in the asset price P;. In other words, after a parameter change
quantities remain fixed, equal to @, and prices, i.e. excess returns, adjust.

A preliminary step to verify whether Propositions 1 and 2 hold concerns
the definition of the riskiness of each asset ¢. Misina (2003) defines it as

Ai =Cov(R;, Rp) . (12)

It is immediately clear that, with definition (12), the riskiness of some assets
may be negative. Even if one is ready to accept this incongruity, we can see
that, in general, the RAI does not appear to provide a reliable measure of
the risk aversion.

Given (12), we can rewrite equation (11) as:

er )
Ry =\ .
Hence, consider a change in the risk aversion parameter ~:

OR§*

Ai .
vy

Thus, Proposition 1 is established in this model.
Now consider a change in the riskiness A;:

ORs®
o !

It would seem that Proposition 2 is established, because ORS* /0\; are con-
stant for any ¢; then, a simultaneous increase in the riskiness of all assets
does not seem to yield a rank effect. However, as Misina (2003) points out,
the result that the derivatives of each asset’s excess returns with respect to
its riskiness are constant does not necessarily establish Proposition 2: one
has to consider explicitly which parameter has caused the increase in assets’
riskiness.

In order to prove that Proposition 2 does not hold, we just need to
provide a counterexample, which we borrow from Misina (2003).

12



Example. Assume that there are only two assets, denoted with i and j,
with variances (712 and (7? and covariance 0;;. The CAPM is:
Ri* = (@0} +aj0i;)
sz = 7 (aj(J'? +Ei0ij) .

Suppose that the riskiness of asset i changes because the covariance of asset
© with asset j increases; then:

Clearly, the change in covariance will also affect the riskiness of asset j;
therefore:

ORS*
) = Ya; .
80¢j
= ORe* , ORS” . . .
Now if @; # a;, then 5~ # -1, which gives rise to a rank effect.
ij ij

This example highlights a general problem (see Misina (2003, page 12)):
changes in the riskiness of one asset will affect expected returns also on other
assets and will, in turn, be affected by changes in the riskiness of other assets.
The previous example shows that this type of dependence may give origin
to a rank effect, unless all assets are equally weighted (a; = a; V (7, 7))

An obvious way to preclude the possibility of these patterns is to assume
that asset returns are independent. In this case, the CAPM becomes:

2

exr __ —
Ry* = ya;05

2

where 02 = Var (R;). In this model, \; = @;03

a change in risk aversion yields a rank effect:

. It is immediately clear that

ORS*

8—71 =\ .
Consider, however, a change in o?:

ORS* _

do2 4

1

which may yield a rank effect; for instance, if there are only two assets, say
assets ¢ and j, then a simultaneous change in their riskiness yields a rank
effect as long as @; # @;. Thus, even with independent returns, the RAI
cannot discriminate between a change in risk aversion and a simultaneous
change in the riskiness of all assets, unless a; = a; V (¢, 7).

13



Another possibility is to consider independent returns and a idiosyncratic
shock. We can show that the rank correlation may be affected also in this
case. However, if the cross section of assets is sufficiently large (as it should
be in the CAPM), it is reasonable to presume that the change in correlation
is small. In fact, consider a idiosyncratic shock to a single asset, say asset
i, and suppose that assets ¢ and j are such that A; > A; while Rf* < RZ*.
If @ > 0, an increase in (712 causes an increase in A; that, therefore, does not
change the inequality A; > A;; in addition, it causes an increase in R{* that
can reverse the relationship with R* into Rf* > R5*, thereby increasing the
rank correlation. Now, since asset ¢ is the only asset for which we observe
some change (in both its riskiness and its return), we may expect that, if the
cross section of assets is large, the change in the rank correlation is rather
small.

Finally, note that an alternative way of preceding is to change the defi-
nition of riskiness of asset i. However, if \; # Cov (R$*, RSY), then equation
(11) shows that Proposition 1 may not be established. E.g., suppose one
puts \; = (r?; then

wa = aN+ Zajﬁij
J#i

Therefore, OR$* /0 is no longer proportional to \;, denying Proposition 1.

3.3 A summary

The previous analysis has focused on the properties of the RAI in the context
of the standard CAPM. This analysis shows that one can prove that the RAI
distinguishes between changes in risk and changes in risk aversion only under
very restrictive assumptions.

First, drawing on Misina (2003) we have shown that Proposition 1 and
2 do not hold if asset returns covariate and the assets in the market port-
folio are not equally weighted. Second, to account for the case of unequally
weighted assets we have considered the assumptions of independent returns.
In this case, we have proven that the RAI cannot distinguish between a
change in risk aversion and a simultaneous change in the riskiness of all
assets, unlike the claim of Kumar and Persaud (2001, 2002). Next, with
independent returns and unequally weighted assets, if the shock to asset
riskiness is idiosyncratic we need the further assumption that the cross sec-
tion of assets is sufficiently large.

Thus, given that the assumption of equally weighted assets is too re-
strictive, proving Propositions 1 and 2 in the context of a CAPM requires
independent returns, idiosyncratic shocks to assets’ riskiness, and a large
cross section of assets.

14



4 An application

In this section we use a modified version of the classical methodology build
by Fama and MacBeth (1973) to estimate the risk aversion parameter from
a standard CAPM. Departing somewhat by the traditional practice in which
risk aversion is estimated on a cross section of assets referred to long time
periods (generally, from 5 to 10 years), here we run our estimates on a cross
section of monthly data.'® Thus, we obtain a short-term measure of risk
aversion, that we compare with the RAI. Our results will show that, in our
sample, these estimates and the RAT are almost equivalent.

4.1 Methodology
Our objective is to estimate the model:

zegf = YeAit (13)
on a cross section of assets ¢, ¢ = 1,...,n, at time ¢t. Hence, we want to
obtain an estimate of the risk aversion parameter ~,, for each time ¢.!* The
assets included in our analysis are the stock market indices of ten sectors of
the United States, the euro area and Japan, while time periods are calendar
months.!> To estimate equation (13), we need the excess returns R and
the regressors \; 4 — which represent the covariance of asset ¢ with the market
portfolio at time t.

In order to determine the excess returns Rfj — that, we recall, are equal
to E (R;;)— Ry — we have to find the expected returns £ (R; ;). The standard
practice followed by the literature is to use rational expectations and assume
that:

Rz‘,t ) (th) =&t
where ¢;; is a white noise. Therefore, model (13) becomes:
Riy — Ry =yihig + €t - (14)

In order to obtain the regressor A;; we use the first step of the “two-
pass” procedure of Fama and MacBeth (1973). Hence, for each asset ¢ we

'3For instance, Black, Jensen and Scholes (1972) consider non-overlapping 5-year peri-
ods, Fama and MacBeth (1973) use overlapping periods from 5 to 8 years, Sharpe (1965)
uses a single 10-year period.

4 The parameter v, is the Arrow-Pratt coefficient of absolute risk aversion in the context
of the theoretical model (11); it can be interpreted as an aggregate relative risk aversion
of the economy in the context of the more general model (20) (see Appendix A.1).

'5We use end-of-period value-weighted monthly stock indices of 10 sectors (level 3 of the
Financial Times’ classification) of general indices of the three main areas (United States,
the euro area and Japan). Indices are in US dollars. The source is Thomson Financial
Datastream.
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run the rolling regression:

k= T 0 R+ ik s

on a time-series of data with k that goes from t — H + 1 to t, where ok
is the excess return on asset ¢ at time k, a; is an asset-specific constant,
B, is the asset “beta” (namely, it is the covariance between the return on
asset ¢ and the return on market portfolio divided by the variance of the
market portfolio), R7Y ) 1s the excess return on the market portfolio, 7, j, is
the residual.'® We run this regression with a moving window of 36 months
(i.,e. H = 36) and obtain a point estimate of the parameter Bi,t for each
asset i and time period t.!” Note that the product between the variance of
Ry, in the H months before period ¢ and Bi,t provides an estimate of \; ¢,
denoted with A; .

We can now estimate equation (14) on cross-sectional data. Plugging di-
rectly an estimate of \; ; into equation (14) would cause an errors-in-variable
problem. Therefore, following the literature, we reduce the cross-sectional
variability by including in the regression two other explanatory variables,
denoted with z; and 25.'® These variables are: the logarithm of market
capitalization (Schwert (1983)) and the “systematic” skewness (Kraus and
Litzenberger (1978)).1 Hence, for each time period ¢ we estimate:

ex N
it = ke + i + b1z + barzoie +€ig

where 7, is our short-term measure of risk aversion, k; is a constant, and

16 For the market portfolio, we use the World Stock Market index, computed by Thomson
Financial Datastream. Note that our application only includes stock prices. On this point,
the Roll critique (Roll (1977)) pointed that the model’s validity may depend on the assets
included in the portfolio: the CAPM, in fact, should include all assets, tradable and non-
tradable, tangible or intangible, that adds to the world wealth. However, Stambaugh
(1982) constructed a number of market portfolios, which included also government bonds,
corporate bonds, Treasury bills, real estate and consumer durables, and finds that even
when stocks represent only 10 per cent of the market portfolio, inferences about the model
are the same as those obtained with a stocks-only index.

'"The proper specification of the CAPM requires that asset weights in the market port-
folio do not change over time. In the World Stock Market index, that we have adopted as
a proxy for the market portfolio, weights do change. However, given the large number of
assets contained in that index, this is usually considered a good working approximation
(see Ferson et al. (1987) for further discussions on this issue).

'%Recall that the errors-in-variable problem would cause the estimated risk aversion to
be smaller than the true one. Two alternative ways to address this problem are: clustering
the assets according to their estimated betas (Black, Jensen and Scholes (1972) and Fama
and MacBeth (1973)) or using maximum likelihood estimates to avoid the need of separate
steps (Gibbons (1982)).

Y9The “sistematic” skewness is introduced in order to account for the possible ef-
fect of higher order moments of the utility function of the representative investor.
Following Kraus and Litzenberger (1978), we compute it as: E[(Ri — E(R:))(Rm —
E(Rm))?]/E[(Rm — E(Rm))?].
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€;,¢ is the residual.?’ To address heteroskedasticity, we use the Newey-West
estimator (with the Bartlett window) and we cancel the observations outside
the interval £20.

Finally, in order to obtain the RAI, for each time ¢ we compute the
rank correlation between risks and returns using the estimates of \;; and
the returns R;;. Following Kumar and Persaud (2001, 2002), among the
possible measures of rank correlation we choose Spearman’s. Therefore, the

RAT is: p* (Rz-,t, XM) .

4.2 Results

The results of our estimates are illustrated in Figure 3. In order to get
smoother series, for both indicators we present a (centered) moving average
of five terms.

Both indicators show two phases of sharp increase in risk aversion: the
former goes form the beginning of 1998 to the first half of 1999, the second
starts at the end of the year 2000 and vanishes during the year 2003. In
2003, in particular, risk aversion either stabilized (according to the CAPM
indicator) or decreased (according to the RAI).

Although these results seem quite reasonable, we should note that our
short-term indicator often takes negative values, a well-know problem at
the monthly frequencies (see IMF (2003, Box 3.1)). In addition, even when
the estimates are positive, they are still rather small relative to the values
that one could obtain at lower frequencies. On the one hand, this outcome
could be due to an unsatisfactory solution of the errors-in-variable problem
that we have discussed above. On the other hand, it could be due to more
structural problems that occur at these frequencies (for instance, negative
returns are dominant in some sub-periods).

*0Recall that according to the Sharpe-Lintner version of the CAPM, k; should be zero.
The Black version, instead, allows for k; # 0; in this case, ki + Ry,: is the return on the
zero-covariance portfolio.
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Figure 3: RAI and short-term risk aversion from a CAPM

In addition, the behavior of the risk aversion illustrated in Figure 3
does not appear to be robust and, therefore, results needs to be taken with
some caution. In particular, results are not robust to the assets included
in the regression (while including bond prices does not modify the results,
adding stock indices of emerging countries often alters the pattern of risk
aversion), the choice of the frequency (monthly, quarterly and annual returns
provide different results), the method chosen to address the errors-in-variable
problem.

4.3 A comparison

The most striking feature of Figure 3 is the similarity of the behavior of the
two indicators. In particular, the correlation between the RAI and our short-
term measure of risk aversion obtained by the CAPM is 0.8. This result is
robust to essentially any choice made in our application.?! Thus, despite
the theoretical differences discussed in Section 4, the two indicators provide
essentially the same results. We can explain this apparent conundrum by
focusing on the statistical properties of both indicators.

21Qpecifically, we have performed a sensitivity analysis that included the following
changes: the assets included in the analysis (we have included bond prices of industrial
countries and stock prices of emerging countries); the explanatory variables z; selected to
address the errors-in-variable problem (we experimented a model without z; and/or z2);
the size of the moving window in the time-series regression (besides H = 36, we have also
tried H = 24 and H = 60).
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The OLS estimate of 7, in model (14) are:

~ CO’U(Rt, /):t)
Var(y)

that we can rewrite as:
s = p(Re, Me) - ¢t (15)

where p(Rt,Xt) denotes the linear correlation between R; and Xt for the
cross section of assets at time ¢, and:

1/2
VCLT‘(Rt)

Var (Xt)

Ct =

Now recall that the Spearman’s rank correlation p® may be regarded as
a robust statistic for the linear correlation p. For instance, if p =1 (p = —1)
then p® =1 (p® = —1). In addition, any change in the rank that increases
(decreases) p® also increases (decreases) p (see, e.g., Huber (1981, Chapter
8) and Stuart and Ord (1991, Chapter 26)). Thus, if the ratio ¢, that we
call variance ratio, is sufficiently stable with respect to p(Rt,Xt), then Ve
is proportional to p(R¢, At). In that case, being p*(R¢, At) >~ p(Re, At), the
indicators 4, and p* (Rt,xt) would be almost equivalent.

The ratio ¢; is indeed stable in our sample. Figure 4, in fact, shows the
variance of ¢; and the variance of p*(Ry, A¢) (that is approximately equal
to that of p(Ry,A;)). When the former is sufficiently small with respect
to the latter, this means that the behavior of 7, is mainly driven by the
correlation coefficient (see equation (15)). Figure 4 shows that the variance
of ¢ is about one thousand times smaller than the variance of p®(R:, A¢).
Therefore, ¢; is sufficiently stable and this explains the equivalence of the
results obtained with the two indicators.

Thus, although the theoretical analysis performed in Sections 3 and 4
suggested that one needs very restrictive assumptions to prove that the RAI
is an indicator of risk aversion, the preliminary evidence illustrated in Figure
3 shows that the RAI could be a good proxy of a standard CAPM-based risk
aversion indicator. Being a robust measure of the linear correlation between
R; and A4, as long as the variance ratio ¢; is stable the RAI is, de facto, a
proxy of the risk aversion parameter of the CAPM. Further studies, however,
are needed along two main directions. First, one should verify whether c¢;
is approximately constant also in other applications. Second, a Montecarlo
simulation should try to specify under what conditions one can benefit from
the robust estimates provided by p°.
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Figure 4: Variances of the RAI and of the variance ratio

5 Conclusion

We provide a theoretical and an empirical analysis of the Risk Appetite In-
dex, recently proposed by Kumar and Persaud (2001, 2002). This indicator
aims at measuring the degree of risk aversion of the representative investor.

In our theoretical analysis, we prove that the RAI cannot correctly iden-
tify risk aversion neither in the ad hoc pricing model proposed by Kumar
and Persaud (2001), nor, in general, in the standard CAPM. In particular,
in the context of the CAPM, we show that the RAI measures investors’ risk
aversion only under very restrictive assumptions. Specifically, if the assets
in the market portfolio are not equally weighted, the RAT requires indepen-
dent asset returns, idiosyncratic shocks to assets’ riskiness, and a sufficiently
large cross section of assets.

Despite these assumptions are theoretically very restrictive, it is neces-
sary to evaluate empirically whether they significantly affect the behavior
of the RAIL This can be done by comparing the RAI with a measure of
risk aversion “in the short-term”, which we derive from the estimation of a
CAPM - a model that does not require either independent returns or spe-
cific assumptions on the nature of the shocks. We consider an application
to the behavior of international asset prices since 1998 as a case-study. The
comparison shows that results are surprisingly similar. Therefore, by focus-
ing on its statistical properties, we prove that under a certain condition the
RAI may be regarded as a robust estimator of the risk aversion parameter
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in a CAPM. This condition requires that the ratio between the variance of
assets’ returns and the variance of assets’ riskiness is approximately con-
stant — a condition that is met in our sample. However, further studies are
needed to verify whether that condition also holds in other applications, and
to identify the shocks that may induce to prefer a robust estimator like the
RAL
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A Appendix

A.1 Heterogenous agents with risk averse preferences

Section 4 was based on the restrictive assumptions that agents are identical,
and that their preferences are given by CARA utility functions. Follow-
ing Huang and Litzenberger (1988), here we discuss a more general setting
where agents are heterogeneous in both preferences and wealth. In this more
general model, our conclusions on the RAI will remain essentially unchanged
once that we focus on an appropriately specified global risk aversion param-
eter. This is because this setting leads to version of the CAPM which has
the same functional form as equation (11).

We assume that preferences are represented by increasing and concave
utility functions. With respect to the previous section, we will maintain
the assumption that asset returns are multivariate normally distributed. In
addition, we will redefine the problem in terms of shares of wealth rather
that in value terms. Namely, denote by a;j the amount of wealth invested
in asset ¢ by investor h; then, the share of investor h’s wealth, W}, invested
in such asset is:

Wiy =
) Wh
The total wealth of the N investors in the economy is W, = Zévzl Wh,.
In equilibrium, the total wealth W, is equal to the total value of the assets.
We denote with wj; ,, the portfolio weight of asset ¢ in the market portfolio,
namely:

N
Wy,

Wim = E Wi ho7
’ W,
h=1 m

Using the budget constraint (6), we can rewrite the consumption (7) of
the investor h with wealth W}, as:

Ry +> wip (R — Ry)
=1

Ch = (Wh - Zwi,hWh> Ry + Zwi,hWhRd =Wy

i=1 i=1

(16)

The maximization problem of such investor, whose preferences are rep-
resented by the increasing and concave function wuj, € C? becomes:

max {E [uh (WhRf + sz’,hWh (R; — Rf)) } . (17)

a °
i=1
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Let us assume that a solution to (17) exists. Since wuyp is concave, the
first order (necessary) conditions are also sufficient and are:

E =0 Vi=1,..,n,

uj, (WhRf - Zm,hWh (R; — Rf)) (R — Ry)

i=1

(18)

where the coefficients w; j, are the optimal shares of wealth invested in asset
i by individual h. The optimal consumption of such investor then is:

Uh = WhRy + Zwithh (Rq — Rf) .
=1

Using the definition of covariance, we can rewrite condition (18) as:
E [uj, (Ch)] - E(Ri — Ry) + Cov [uy, (Ch) , R;] =0.
In addition, using Stein’s lemma we find:
Cov [u}, (Ch),Ri] = E [u}} (Ch)] - Cov (Ch, R;)

which we can substitute back into the previous expression and, recalling

that E (R; — Ry) = R§*, we have:
E [u}, (Ch)] - R§® = —E [uj; (Ch)] - Cov (Ch, Ry) (19)

We can now define the global absolute risk aversion of the investor h as:

Dividing both terms of (19) by E [u’}: (Uh)] , summing across the N investors
and rearranging we obtain:

N -1 N
R* = (Z Fh1> . ZCO’U (6;“ R2) )
h=1 h=1

Note that the first term in brackets of the right hand side is the harmonic
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mean of the investors’ global absolute risk aversions. Moreover we can write:

N N
> Cov (Cp,Ri) = Cov Z@h,RZ)
h=1
,&}

h=1 h=1i=1

Substituting into the previous expression and putting

N —1
r=Ww,, (Z r,;1> ,
h=1

which represent a sort of aggregate relative risk aversion of the economy, we
get:

R¥ =T -Cov (R, Rm) (20)

that has exactly the same functional form as (11).

Equation (11) shows that our conclusions on the risk appetite index do
not depend on the specific hypothesis made for the investors’ preferences:
as long as asset returns are multivariate normally distributed (a hypothesis
that cannot be rejected for monthly and quarterly data) they hold for any
non satiated and risk averse preferences.
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