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1 Introduction 

Portfolio theory focuses on the question, how an investor can at the best invest money in as-

sets that are available on the market. In this realm, basic work has been done by Harry Mar-

kowitz (1952, 1959). He suggests that, concerning the portfolio composition of N assets, risk-

averse investors should comply with expected value PP  and variance 2
PV  of the total portfolio 

return. Assuming constant absolute risk aversion, the following preference function is being 

maximized:1 

2
P P

X
X ' X ' X max!

2 2

O O
I  P � V  P � 6 o   (1) 

Here, X is the N-vector of asset weights: � �1 NX x , , x ' ! , 6  describes the N Nu  variance-

covariance matrix of asset returns, P  describes the expected return vector and O  the risk aver-

sion parameter.  

 

One problem of portfolio theory is the estimation of the required parameters: expected values, 

variances and covariances of individual asset returns. The input parameters are being esti-

mated and the optimization procedure assumes that they are the true values of the return mo-

ments. However, future returns are random variables and their true values are different from 

their expected values. In many cases, extreme short sale positions result from the optimization 

algorithms or, if portfolio weights are bounded between zero and one, a lot of assets will not 

be incorporated into the optimal portfolio. If the parameters have been correctly estimated, the 

resulting portfolio weights obviously lead to the highest preference level. However, if the pa-

rameters deviate from the forecasts, the only slightly diversified portfolio could achieve a 

poor preference level, if the respective chosen assets develop suboptimal. Furthermore, the 

optimal weight vector  

11
X � 6 P

O
  (2) 

that has been determined from maximization problem (1) is very sensitive to the incoming 

parameters. Marginal changes in the expected returns can already result in great differences in 

                                                 
1 A utility function with constant absolute risk aversion and normally distributed returns involves this certainty 
equivalent, which can be maximized instead of the expected utility. See Anderson/Bancroft (1952), p. 37; Freund 
(1956).  
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the portfolio weights.2 Regarding changes in variances and covariances, the sensitivity of 

weights is not as strong as with changes in the expected returns.3  

 

The procedure that has been developed by Black and Litterman (1992) combines equilibrium 

expected returns with subjective views or prior beliefs of investors and has widely been ac-

cepted in practice.4 If views are only proposed for some assets, only these weights vary from 

the associated market weights. As a matter of fact, predictions (views) first have to be made in 

order to deviate from the intuitive market weights. If own predictions cannot be made, the 

Black-Litterman procedure does not provide the possibility of applying active portfolio man-

agement. Even if individual predictions can be made for asset returns, these are based on sin-

gle opinions – either an own prediction or an analyst’s forecast. In this contribution, we de-

scribe two possibilities of how views can be quantified for the Black-Litterman procedure 

with the help of valuation models and a multitude of analysts’ forecasts. Furthermore, we ap-

ply an to our knowledge unprecedented out-of-sample performance analysis of the Black-

Litterman procedure. 

 

Herold (2003) describes an approach, in which the Black-Litterman procedure can be em-

ployed with qualitative analysts’ forecasts. In the framework of active portfolio management, 

the optimal portfolio is chosen in a way to reach a given tracking error. However, the compo-

sition of the portfolio is based on one analyst’s forecasts and not on a number of analysts’ 

forecasts. Jones (2007) generates the views on the basis of a factor model. The view confi-

dences are determined from historical return variances and covariances. In our contribution, 

we do not use the historical variance-covariance matrix for the calculation of the confidence 

probabilities but the confidence in views is directly deduced from analysts’ forecasts. 

 

To begin with, in chapter 2 the basics of the Black-Litterman procedure are explicated. Af-

terwards, our both methods for generating views for the Black-Litterman procedure are de-

scribed in chapter 3. For this purpose, in section 3.1 we resort to the number of analysts’ fore-

casts, and in section 3.2 a Monte-Carlo simulation for the creation of prior beliefs is de-

scribed. In the empirical examination in chapter 4, input and output parameters of the methods 

described in chapter 3 are analyzed with the help of real capital market data. Finally, an out-

                                                 
2 A sensitivity study can be found for instance in Kempf/Memmel (2002).  
3 See Chopra/Ziemba (1993).  
4Cf. Herold (2004), p. 285. Goldman Sachs employed for instance the Black-Litterman model. See He/Litterman 
(1999).  
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of-sample performance of the methods is determined in section 4.3. Chapter 5 summarizes our 

findings. 

 

2 The Black-Litterman Procedure 

2.1 Basic Idea 

In their model, Black and Litterman (BL) (1992) combine equilibrium expected returns with 

investor views, in order to calculate a new vector of expected returns BLP  which is then inte-

grated into the Markowitz optimization. The purpose of optimization with these new input 

parameters is to gain relatively balanced portfolios without the implementation of long-only 

constraints or other restrictions. The equilibrium expected returns are derived from the market 

portfolio via a reverse optimization.5  

 

First of all, it is assumed that the return vector r of N regarded assets is normally distributed 

with N 1u  expected return vector P  and N Nu  variance-covariance matrix 6 : 

� �r N ,P 6� . (3) 

The variance-covariance matrix is supposed to be known6 and is estimated traditionally with 

the unbiased historical estimator. However, the vector of expected returns is a random vector 

that follows a normal distribution with known parameters , and3 W 6 :  

� �N ,P 3 W6� . (4) 

3  is the N 1u  expected return vector of the market portfolio and serves as a neutral reference 

point. The calculation of 3  will be described in section 2.2. The variance-covariance matrix 

of the expected return vector P  is chosen as a multiple of the variance-covariance matrix of 

returns r with scaling factor 0W ! . This factor is not predetermined in the model but since 

Black and Litterman assume that the uncertainty about the expected return is smaller than the 

uncertainty (in this case the variance-covariance matrix) of returns, they suggest to choose a 

relatively small W .7  

                                                 
5 Strictly speaking a proxy for the market portfolio is chosen, as the market portfolio could not be reproduced. 
See Roll (1977). 
6 Cf. Black/Litterman (1992), p. 43. 
7 Cf. Black/Litterman (1992), p. 34. 
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2.2 The Neutral Reference Point 

Black and Litterman (1992) use the market portfolio as a starting point for the expected re-

turns.8 Thereby, the expected returns of the market portfolio are calculated via a reverse opti-

mization. By assuming an investor i with preference function (1) and solving equation (2) for 

the expected return vector ,P   

i X.P  O �6 �   (5) 

is obtained. Thus, the vector of expected asset returns P  is a multiple of the product of va-

riance-covariance matrix 6  and the asset weight vector. The optimal asset weights jx  are 

given through the proportion of the market capitalization of the single security to the overall 

market capitalization for a given market portfolio of N assets: 

j j

j N

i ii 1

P
x

P
 

K �
 

K �¦
. (6) 

Here, jK  denotes the number of shares of security j on the capital market and jP  the current 

price of security j. Finally, the only missing component for the calculation of P  by using equ-

ation (5) is the risk aversion O . Taking the capital asset pricing model (CAPM) as a basis, the 

risk aversion parameter is determined as the market price of risk.9 If parameter iO  is undeter-

mined, the relative expected returns can still be identified with the help of (5) and (6). If the 

calculated share returns P  are used in a Markowitz Optimization, as expected, weights of the 

market portfolio are obtained for any iO . 

 

2.3 Investors’ Views 

As an additional opinion, investors can express k views or prior beliefs about the returns in 

the following form: 

� �Q P' ,mit N 0, P� H H :� . (7) 

Q is a k 1u  vector of k forecasted return expectations and P is a known N ku  view matrix. 

The k 1u  vector H  follows a normal distribution with expected value zero and a variance-

covariance matrix :  (view confidence matrix). Following Black/Litterman, :  is a diagonal 

                                                 
8 For the selection of an adequate reference return, Black and Litterman also discuss historical expected returns 
of the individual securities, equal expected returns within the asset classes as well as risk adjusted expected re-
turns. However, they arrive at the conclusion that market returns in contrast to the other strategies generate the 
most balanced and intuitive portfolios. 
9 Cf. Pitts (1998), pp. 123. Drobetz (2003) sets the risk aversion parameter to be one. 



5 
 

matrix,10 thus, the views are independent.11 This assumption should be regarded in a rather 

critical way, since views in one industry sector are surely not independent of each other. The 

entries on the diagonal identify the investor’s confidence concerning the respective view: the 

bigger the entry, the less certain is the investor concerning his forecast. The beliefs can be 

indicated absolute as well as relative and there is no need for a view for every asset. The set-

ting up of equation (7) will be exemplified via the following example. 

 

Example 2.1: 

(a) The investor is sure that the expected return of share 1 will amount to 20 %.  

(b) With a probability of 70 %, the investor believes that the difference of the expected 

returns between an equally weighted portfolio of share 1 and share 3 and an equally 

weighted portfolio of share 4, 5 and 6 will amount to 5 % to 7 %. 

  

For an investment horizon of 6 stocks in the form of equation (7), these views are set up in the 

following way: 

1

2

3 1

4 2

5

6

5

0, 2 1 0 0 0 0 0
,

0,06 0,5 0 0,5 0,33 0,33 0,33

0 0 0
with N , .

0 0 9,317 10�

P§ ·
¨ ¸P¨ ¸
¨ ¸P H§ ·§ · § ·

 � �¨ ¸ ¨ ¸¨ ¸ ¨ ¸ P H� � �© ¹ © ¹ © ¹¨ ¸
¨ ¸P
¨ ¸¨ ¸P© ¹

§ ·§ · § ·
H ¨ ¸¨ ¸ ¨ ¸�© ¹ © ¹© ¹
�

  (8) 

 

The first entry of vector Q contains the expected return of share 1 with 20 %. View (a) is spe-

cified in absolute terms. For this purpose, the first entry (for the first stock) of the first view 

row in matrix P’ contains the value one. Since the investor is sure of this view, variance 11Z  

of error term 1H  is zero. Forecast (b) is a relative view. The average of the return interval is 

the second entry of vector Q and the second row of matrix P’ is related to view (b). Since the 

relative comparison is related to portfolios between stocks 1, 3 and stocks 4, 5 and 6, the re-

                                                 
10 Cf. Black/Litterman (1992), p. 35. 
11 If the off-diagonal entries are zero, it can be deduced that the views are uncorrelated. By assuming a normal 
distribution the uncorrelated entries correspond to independent entries. See for this purpose Fahrmeir et al. 
(1997), p. 349. 
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spective column contains 1/2 for stocks 1 and 3 and -1/3 for stocks 4, 5 and 6.12 The view 

confidence is expressed through a probability that has to be converted to a variance. The more 

certain an investor is concerning his belief, the smaller the variance is at the respective posi-

tion in matrix : . Exemplarily, entry 22Z  is derived in the appendix. The second column of 

matrix P exclusively contains zeroes, since neither absolute nor relative forecasts have been 

made for stock 2. 

 

In order to derive the distribution of Q, we need the distribution of the expected returns P that 

have been assumed normally distributed in (4): � �N ,P 3 W6� . Overall, for the distribution of 

the investor’s prior expected returns we get: 

� �Q N P' ,P ' P .3 W6 �:�  (9) 

 

2.4 Combination of Both Perspectives 

With the help of the investors’ views, not sole information about the distribution of returns 

� �E r  3  and � �Cov r, r '  6  is used for the portfolio optimization but the conditional distri-

bution of the returns, with the investors’ views given. The expected return vector and va-

riance-covariance matrix of the conditional distribution result in:13 

� � � � � �1

BLE r | Q P P ' P Q P ' ,
�

{ P  3 � W6 6 W�: � 3   (10) 

� � � � 12Var r | Q P P ' P P ' .
�

 6 � W6 � W 6 6 W�: 6  (11) 

The expected return vector of the conditional distribution is a matrix-weighted average of 

expected values of the individual distributions. In the literature, an alternative notation is often 

used: 

� � � � � �
11 11 1E r | Q P P ' P Q

�� �� �ª º ª º W6 � : � W6 3 � :¬ ¼ ¬ ¼ ,  (12) 

which can be transformed into (10) without further ado.14 

 

If the uncertainty about own beliefs converges to infinity, the investor only trusts in the equi-

librium expected returns: 

                                                 
12 Similarly, relative views could be generated with value-weighted portfolio weights. Cf. Drobetz (2003), pp. 
220. 
13 Cf. Herold (2004), p. 289, Memmel (2004), p. 119.  
14 Cf. Pitts (1998), p. 144, Black/Litterman (1992), p. 42; Lindley/Smith (1972).  
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� �lim E r | Q
:of

 3 . (13) 

Similarly, only market expectations are trusted, if the uncertainty about expected returns con-

verges to zero: 

� �
0

lim E r | Q
Wo

 3 .  (14) 

However, if the investor is certain about his forecasts, i.e. 0:  , the following conditional 

expected value is obtained: 

� � � � � �1
E r | Q P P ' P Q P '

�
 3 � W6 6 W � 3 . (15) 

Since relative forecasts could be made between stocks, expected BL-returns do not directly 

result from investor’s prior returns Q. However, if absolute views with confidence probability 

one are made for single stocks i, the respective expected BL-return BL,iP  is equal to the view 

return iQ . 

 

Using the conditional expected value of the Black-Litterman model for the Markowitz-

optimization, more balanced portfolios result. If there is only an absolute forecast for one as-

set, still all further expected returns of the conditional distribution are changed by the cova-

riance matrix of returns 6 . But when substituting the expected return vector of the condition-

al distribution into a portfolio optimization, unchanged portfolio weights for all shares for 

which no forecasts have been made are obtained. However, an adapted weight for the asset for 

which a view has been given is calculated. This is, of course, only true for the case of non-

binding restrictions. However, if the sum of weights is restricted to be one, the relative 

weights for assets without views remain unchanged.15 

 

2.5 Problems With the Application of the Black-Litterman Model 

As has been described before, for the Black-Litterman model, own views about return expec-

tations of the investment horizon are required. Institutional investors are often only familiar 

with single market segments, as, for example, the segment “Stocks Europe“, but do not have 

expertise in the field of “Stocks Asia“. However, if these investors want to invest in segments 

which they cannot make forecasts about, using the Black-Litterman model, they would “only“ 

realize the market portfolio in the particular field. Private investors, who possibly do not have 

any information about stocks, would likewise only realize the market portfolio, which turns 
                                                 
15 Cf. Herold (2004), pp. 289. Furthermore Herold applies a case study in which the traditional mean-variance 
optimization of Markowitz is compared to the Black-Litterman model, see Herold (2004), pp. 370.  
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the Black-Litterman model to be dispensable. Additionally, analysts do not typically make 

predictions as in example 2.1, thus this possibility of generating forecasts for deviations of the 

market portfolio weights is not given in reality, either. 

 

In order to make use of analysts’ expertise for the formulation of views and to have the possi-

bility of diverging from the market portfolio in less conversant segments, in the following, a 

model will be described, which generates beliefs for the Black-Litterman model with the help 

of analysts‘ dividend forecasts. 

 

3 The Use of Analysts’ Forecasts 

3.1 Determining Views From the Number of Analysts’ Forecasts  

Historical expected equity returns have proved to be poor estimators for future returns.16 Due 

to the necessity of finding better estimators for future returns, the literature for the determina-

tion of implied equity returns on the basis of valuation models has made a rapid development 

during the last years. Meanwhile, there are many empirical examinations of valuation models 

(e.g., dividend discount model, discounted cash flow model, residual income model, Ohl-

son/Jüttner-Nauroth (2005) model), which are based on analyst forecasts concerning several 

parameters and the models achieve good results.17 In the following, views based on the divi-

dend discount model according to Williams (1938) and Gordon (1959, 1966) will be derived. 

Views can be deduced in almost the same manner on the basis of other valuation models. 

 

In the dividend discount model, the expected stock return ( t )
iP is calculated at a given point in 

time t on the basis of the market value of equity ( t )
iEK of a company i as the internal interest 

rate for the time series of expected dividend payments. Predominantly, a two-phase model is 

used. In the first phase of duration T, detailed estimations of the dividends ( t)
iD  by a company 

i are available. For the remaining time, a constant growth ig  of dividends is assumed: 

(t ) ( t T)T
(t ) i i i
i ( t ) ( t ) ( t ) T

1 i i i i

D D (1 g )
EK

(1 ) ( g ) (1 )

�W �

W
W 

� �
 �

�P P � � �P¦ .  (16) 

We can access the  

                                                 
16 See Elton (1999), Jorion (1986), Kempf and Memmel (2002).  
17 See for instance Botosan/Plumlee (2005), Courteau et al. (2001), Francis et al. (2000), Gebhardt et al. (2001), 
Gode/Mohanram (2003), Easton (2004), Daske et al. (2006).  
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x mean  D 

x median M 

x standard deviation  DV  

x highest estimation of D  hiD  

x lowest estimation of D loD  

x and the number of analysts‘ forecasts for D NE 

of expected dividends for the next three years, for every stock and every month. The data are 

from providers of financial data (in this article Thomson Financial Datastream). Now the 

question arises, how the confidence interval and the confidence probability of the views can 

be determined using the data of analysts’ forecasts at hand. 

 

In validity tests for the evaluation of calculated expected returns from the above mentioned 

valuation models, a regression of expected returns with different risk factors, such as Beta, 

debt-equity ratio, market capitalization or information risk is often carried out.18 Thereby, a 

certain relation of a risk factor and the expected returns is assumed and it is analyzed, whether 

this relation can be proved. Concerning the “information risk“, it is assumed that a larger 

amount of information available of a company reduces its cost of capital. As a measure for the 

information risk, Botosan/Plumlee (2005), for example, take the distance between lowest and 

highest forecast of a stock as a basis. They emphasize that this distance reflects the uncertain-

ty of the forecast. Brennan et al. (1993) point out that prices of companies with larger analyst 

coverage react more quickly to market information. Gebhardt et al. (2001) implement these 

examination results by also taking the number of analysts’ forecasts as a measure for the in-

formation risk – the more analysts’ forecasts at hand, the lower the cost of equity capital 

should be. In this article, we also assume that the uncertainty of analysts’ forecasts is larger 

for fewer analysts’ forecasts and vice versa.  

 

In the following, the number of analysts’ forecasts will be linked to the view confidence. In 

order to generate the return interval (t ) ( t )
i,lo i,hiandP P  of analysts’ views, such as in example 2.1 

5 % and 7 %, we initially calculate two expected returns per point in time t and stock i with 

the help of the highest and lowest analysts‘ dividend expectation for this stock and time: 

                                                 
18 See Botosan/Plumlee (2005), Gebhardt et al. (2001).  



10 
 

( t ) ( t 3)3
i,lo i,lo i,lo( t )

i ( t ) (t ) ( t ) 3
1 i,lo i,lo i,lo i,lo

D D (1 g )
EK

(1 ) ( g ) (1 )

�W �

W
W 

� �
 �

�P P � � �P¦ , (17) 

(t ) ( t 3)3
i,hi i,hi i,hi(t )

i (t ) ( t ) (t ) 3
1 i,hi i,hi i,hi i,hi

D D (1 g )
EK

(1 ) ( g ) (1 )

�W �

W
W 

� �
 �

�P P � � �P¦ . (18) 

The entries for the view confidence matrix :  will be calculated with the help of the number 

of analysts‘ forecasts. For each stock, point in time and prediction variable 

(1) (2) (3)
i i iD ,D , and D , there is a number of analysts who have made forecasts. Thus, for the VW 

stock in October, there are, for example, mean dividend forecasts (1) (2) (3)
VW,Okt VW,Okt VW,OktD ,D ,D  for 

the next, the one after next and the then following year and for each of these forecasts, we 

have the number of analysts giving these forecasts at hand: (1) (2) (3)
VW,Okt VW,Okt VW,OktNE , NE , NE . 

Abarbanell/Bernard (2000) and Courteau et al. (2001) measure a strong influence of the ter-

minal value � � � �( t T) (t ) ( t ) T
i i i i iD (1 g ) / ( g ) (1 )� � � P � � � P

 
on the estimation of expected return. Due 

to the great importance of the last term in (16), the number of analysts’ forecasts for the last 

(third) year is taken as a basis for the confidence probability. As a starting point, the maximal 

number of analysts’ forecasts that are made over the whole period of time in question for 

every single stock, is marked with a confidence probability of 100 %.19 Thus, if the maximum 

number of forecasts made for stock 10 is 40 and 40 analysts make forecasts for the third year 

of stock 10 at one point in time, the confidence probability for the particular interval is 100 %. 

If no forecast was made for the third year of one asset at one point in time, the confidence 

probability would amount to 0 %. The confidence probability is then linearly interpolated 

between 0 and 100 % based on the number of analysts’ forecasts for the third forthcoming 

year for every stock at every point in time. Thus, the forecast according to (7) looks like this: 

( t ) ( t )
1,lo 1,hi

1 1 11(t ) ( t )
2,lo 2,hi

2 2 22

N N NN(t ) (t )
N,lo N,hi

2 0 01 0 0 0

0 00 1 0 0
, mit N ,2

0 00 0 1 0

2

§ ·P �P
¨ ¸
¨ ¸ P H Z§ · § · §§ · § ·
¨ ¸P �P ¨ ¸ ¨ ¸¨ ¸ ¨ ¸P H Z¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸ � � H¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸
¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸¨ ¸ ¨ ¸¨ ¸ ¨ ¸P H Z¨ ¸ © ¹ © ¹© ¹ © ¹
P �P¨ ¸

¨ ¸
© ¹

""

""
�

# # # % ## # % # #
#

""

.

§ ··
¨ ¸¨ ¸
¨ ¸¨ ¸
¨ ¸¨ ¸
¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹

  (19) 

In this case, the view matrix P is an identity matrix, as an absolute forecast is available for 

every stock. Equation (10) is then simplified as follows: 

                                                 
19 The maximum number is determined for each stock separately. 
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� � � � � �1
E r | Q Q

�
 3 � W6 6W�: �3 . (20) 

If analysts’ forecasts are missing for some stocks in the portfolio, these can be ignored in the 

view matrix without further ado. At last, we get market weights as optimal weights for shares 

without views. 

 

3.2 Determining Views by a Monte-Carlo Simulation  

Moreover, the view confidence matrix :  could also be determined by directly converting the 

standard deviations of the analysts’ dividend forecasts into standard deviations for investors’ 

expected returns. To this end, a Monte-Carlo-simulation is carried out in order to compute the 

standard deviation of expected returns with the following equation: 

( t ) ( t 3)3
i,s i,s i,s(t )

i (t ) (t ) (t ) 3
1 i,s i,s i,s i,s

D D (1 g )
EK .

(1 ) ( g ) (1 )

�W �

W
W 

� �
 �

�P P � � �P¦  (21) 

For a stock i at time t and every parameter which is required for the calculation of the ex-

pected return, s=1, …, S random variables are picked, with S being the number of simulation 

runs. We draw a 

x normally distributed (t 1)
i,sD �

 
with mean value ( t 1)

iD �

 and standard deviation ( t 1)
D,i
�V  (pro-

vided by Thomson Financial): � �( t 1) ( t 1) ( t 1)
i,s i D,iD N D ,� � �V�  

x � �( t 2) ( t 2) ( t 2)
i,s i D,iD N D ,� � �V�

 
and � �( t 3) ( t 3) ( t 3)

i,s i D,iD N D ,� � �V�  

x and a uniformly distributed growth rate with i,s i,s,lo i,s,hig [g ,g ].�  

On the basis of one respective simulated data set s: (t 1) (t 2) (t 3)
i,s i,s i,s i,sD ,D ,D ,g� � � , an expected return 

(t )
i,sP

 
is numerically computed with (21). Thus, we get S expected returns, from which the va-

riance of expected returns of stock i at time t is determined. Finally, the variances are inserted 

on the diagonal of matrix : , and the Black-Litterman model can be applied. 

 

3.3 Further Models for Estimation of View Confidences 

3.3.1 Historical Variance-Covariance Matrix 

A further possibility of determining the view confidence matrix :  is to use the historical va-

riance-covariance matrix of the specified views. Here it is assumed that relations of stocks in 
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the past are also valid for the future. Thus, we detach ourselves from “forecasting“ analysts’ 

estimations and the view confidence matrix :  is: 

� �diag P ' P:  6 . (22) 

If we have a look at a certain view portfolio, that is, a certain row k from the transposed view 

matrix (for example from (8)) and multiply it by variance-covariance matrix 6  and then by 

column vector kP , we get the portfolio variance of the view portfolio 

kk k kP ' P .Z  6  (23) 

Since, in the case of our approach, the view matrix is an identity matrix, the variance-

covariance matrix is simplified to: 

� �diag:  6 . (24) 

 

3.3.2 Proposal of He and Litterman (1999) 

A different implementation is proposed by He and Litterman (1999). The elements of the 

view confidence matrix of view k kkZ  are defined in such a way that they equal the historical 

variances of view k multiplied by W : 

� �kk k k/ diag P ' PZ W  6 .  (25) 

This definition has the advantage that parameter W  does not need to be specified in the equa-

tion for calculating the expected returns according to Black-Litterman (12). Substituting 

� �diag P ' P:  6 �W
 
into (10), we get: 

� � � �� � � �

� �� �� � � �

� �� � � �

1

1

1

E r | Q P P ' P diag P ' P Q P '

P P ' P diag P ' P Q P '

P P ' P diag P ' P Q P ' .

�

�

�

 3 � W6 6 W� 6 �W � 3

 3 � W6 W� 6 � 6 � 3

 3 �6 6 � 6 � 3

  (26) 

However, by this we have made an implicit assumption regarding the relation between matrix 

:  and parameter W . The division of variance of view k kkZ  and W  equals the historical va-

riance-covariance matrix of the view-portfolio kP . Thus, the entries in matrix :  will be much 

smaller than in the above described case, since parameter W  is less than one. Hence, investors’ 

views are given more importance. 
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4 Empirical Examination  

4.1 Examination of the Method on the Basis of Number of Analysts’ 

Forecasts 

In the following, the Black-Litterman model is applied with real capital market data. For this 

purpose, monthly data from 12/01/1993 to 01/01/2008 of all stocks of HDAX and DAX100, 

respectively, are available.20 Data is extracted from the Thomson Financial Datastream data-

base. Since DAX100 has been replaced by HDAX not before 03/24/2003, it will form the 

basis of our empirical examination in the beginning. DAX100 has been composed of 30 DAX 

shares and 70 MDAX shares. However, HDAX is composed of 30 DAX shares, 50 restruc-

tured MDAX shares and 30 TecDAX-shares. Insofar, we are considering 100 shares until 

03/24/2003 and 110 shares afterwards. Only stocks that are included in the index (either 

DAX100 before April 2003 or HDAX from April 2003 on) at a specified point in time are 

considered in the optimization at this time. Furthermore, we examine, whether all data are 

available for the estimation of input parameters for the Markowitz optimization– for example, 

the share returns of the last 36 points in time for the estimation of the historically expected 

return. If, however, not all data that are required for the empirical examination are available, 

the respective share is not used in the optimization for this point in time. This procedure al-

lows for an optimization that, at a certain point in time, contains a stock, which is no longer in 

the index after this point in time – thus, in this empirical examination a survivorship bias is 

nonexistent. The number of shares which are optimized over time fluctuates between 34 and 

66.  

 

The period of portfolio optimization starts on 01/01/1997. The preceding data are, for exam-

ple, used for the calculation of the variance-covariance matrix or the historical mean value of 

realized returns.21 The variance-covariance matrix is calculated on the basis of the Single-

Index-Model. Although a historical variance-covariance matrix on the basis of the last 36 

monthly returns could be calculated, the number of shares in the optimization exceeds 36. 

                                                 
20 The data are from Thomson Datastream.  
21 The variance-covariance matrix is calculated on the basis of the last 36 points in time (three years) in every 
point in time. For the computation of the historical means 36 months are used too.  
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Thus, the resulting variance-covariance matrix would not be invertible and the optimization 

could not be applied.22  

In Figure 4.1, the equilibrium expected returns calculated according to (5) and the historical 

expected returns of 12/01/2007 are presented.23 At this point in time, 64 shares enter into the 

optimization. Negative historical returns appear on the basis of the last 36 months for four 

stocks. On the contrary, most shares feature much higher historical returns than equilibrium 

expected returns. For the determination of portfolio weights with (2), the historical mean vec-

tor of returns histP  and the vector of equilibrium returns 3  are substituted for the vector of 

expected returns P . For vector 3 , the composition of the “market portfolio“ obviously results 

immediately. For the weight calculation, in the first instance we assume that short sales are 

permitted for all stocks.24 

 

 

Figure 4.1: Equilibrium Returns and Historical Returns 

 
The optimal portfolio weights, which result from the historical expected return vector, are 

illustrated in Figure 4.2. The first chart shows the market weights and the second chart depicts 

the extreme weights which result from historical returns. They fluctuate between -4.3 and 4.6, 

                                                 
22 Furthermore the estimation error for the estimation of the variance-covariance matrix within the single index 
model is lower up to a time period of five years compared to the historical variance-covariance matrix. See Bri-
ner/Connor (2008), p. 12.  
23 The risk aversion parameter is set to two for the figures as the mean of all considered risk aversion parameters. 
Parameter W  is set to 0.03, which relates to a return history of 35 months: 1/ 35 0.03|  within the framework of 
a Bayesian derivation of the Black-Litterman model. For a sensitivity analysis of the parameters see Drobetz 
(2003). Moreover, all following figures correspond to the date 12/01/2007, thus the last point in time with an 
optimization.  
24 The sum of portfolio weights differs from one. The difference of one minus sum of asset weights is invested in 
the riskless asset. See Kempf/Memmel (2003), p. 520, Drobetz (2003), p. 231. 
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while, according to the construction, the market weights are all positive, between zero and one 

and add up to one. An Investor would most likely not realize these extreme weights.  

 

 
Figure 4.2: Optimal Portfolio Weights Resulting from Equilibrium and Historical Returns 

 

Figure 4.3 illustrates the returns from analysts’ forecasts for the Black-Litterman model. The 

black bars represent the expected returns loP  from the dividend discount model for the follow-

ing out-of-sample performance examination, that are calculated from the lowest analysts’ div-

idend forecasts loD  with the lowest growth rate that is given for every individual share. The 

white bars represent the expected returns hiP , that are calculated from the highest analysts’ 

dividend forecasts hiD  with the respective highest growth rate. The growth rates are indivi-

dually estimated for every share. In the literature, different growth rates are applied for the 

calculation of terminal values. By way of example, the inflation rate or growth rate of the 

gross national income serve as estimations for the growth rate of dividends.25 

 

 

                                                 
25 See for instance Wallmeier (2005), p. 141, Stotz (2004), p. 191. 
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Figure 4.3: Lowest and Highest Expected Return of the Dividend Discount Model 

 

 

 

Figure 4.4: Histogram of the Number of Analyst Forecasts 

 

Figure 4.4 shows histograms of the number of analysts’ forecasts for estimations 

(1) (2) (3)D ,D and D . The maximum number of analysts’ forecasts for the whole period and all 

shares amounts to 45, the minimum number to two.26 34 to 66 shares over a period of 132 

months are available for the histogram; overall 7569 values. The histograms of estimations for 

the first and second forthcoming year are similar. The distribution of number of estimations 
                                                 
26 If there is only one analyst forecast, the stock is not contained in the optimization, as there is no standard devi-
ation of the estimations. 
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per share is thus approximately the same. In comparison to the first two charts, the third chart 

reveals that much less forecasts are made for the third forthcoming year. The further away the 

estimation period, the less estimations are made by analysts. 

 

Figure 4.5 presents an overview of the input parameters for the calculation of the expected 

Black-Litterman returns BLP  according to (10) for the first 30 shares on 12/01/2007. For pur-

poses of clarity, only the values of the first 30 of 64 shares are depicted below. The here as-

sumed relation of a higher number of analysts’ forecasts involving a higher confidence fur-

thermore implies that a higher number of analysts’ forecasts also results in a lower standard 

deviation. The first chart shows the return difference hi loP �P , which enters the calculation of 

view standard deviations according to (30). The higher the return difference, the higher the 

view standard deviation is. The second chart shows the number of analysts’ dividend forecasts 

for the third forthcoming year, that is utilized for the calculation of the view confidence in our 

approach. The highest number of analysts’ forecasts can be found for share 16 with 25 fore- 

 

Figure 4.5: Overview of Returns in the Black-Litterman Model 
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casts, the lowest number has been made for share 4 with 2 forecasts. The third chart in figure 

4.5 depicts the standard deviations of the view confidence matrix : . Share 19 has the lowest 

standard deviation, which is a result of the relatively high number of analysts’ forecasts (18 

forecasts) and the low return difference. On the contrary, share 24 has the highest view stan-

dard deviation. There, the number of analysts’ forecasts is relatively small (4 forecasts) and 

the return difference hi loP �P  is relatively high. The fourth chart in figure 4.5 shows the equi-

librium returns 3 , the mean return from the dividend forecasts � �mi hi lo / 2P  P �P
 
for vector 

Q in (7) and the expected BL-return BLP , which is calculated from the previous returns ac-

cording to (10). There is evidence that the expected BL-returns by trend are closer to the ex-

pected returns from the analysts’ dividend forecasts. Share 2 features a relatively high stan-

dard deviation, which is also reflected in the higher deviation between the expected return 

from the dividend discount model and the BL-return. However, the level of standard deviation 

does not necessarily indicate the deviation. For instance, the BL-return for share 24 almost 

equals the dividend discount model-return, even though the standard deviation is higher than 

for share 2, where the return difference is clearly higher. The reason is the dependency among 

shares that enter the calculation of the BL-return in form of variance-covariance matrix of 

returns 6 .  

 

The optimal portfolio weights according to Black-Litterman are then calculated for the first 30 

shares from (2) with the BL-returns BLP . In Figure 4.6, the BL-weights are represented by 

white bars and are opposed to the market weights (black bars) and the weights that are ob-

tained if the “pure” implied dividend returns miP  (grey bars) are inserted. The weights of the 

Black-Litterman model are much more balanced than the pure dividend weights. Even if the 

expected Black-Litterman-returns deviate from the dividend returns to a minor degree (cf. 

Figure 4.5), this is not the case for the weights. The weights based upon BLP  predominantly 

lie between the market weights and the “dividend weights” on the basis of analysts’ forecasts. 

For the 30 shares the share weights are balanced – for example, the weights for shares 2, 9 

and 15 are close to the market weights, the ones for shares 1, 6 and 25 tend towards the divi-

dend weights. All in all, we can say that the weights are by far not as extreme as the optimal 

weights obtained with historical return forecasts (cf. figure 4.2). The BL-weights fluctuate 

between a minimum weight of -0.76 for share 21 and a maximum weight of 0.74 for share 47 

on 12/01/2007.  
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Figure 4.6: Optimal Portfolio Weights 

 

4.2 Examination of Further Methods for Generating the View Confi-

dence Matrix :  

Figure 4.7 shows the standard deviations calculated according to the different approaches for 

the determination of the view confidence matrix : . The black bars of the first chart represent 

the standard deviations on the basis of the number of analysts’ forecasts and the white bars 

display the standard deviations calculated with the Monte-Carlo simulation. The latter ones 

are clearly smaller. Views with lower standard deviations are assigned a higher loading in the 

calculation of the expected BL-return, thereby the resulting weights deviate stronger from the 

market weights. The optimal portfolio weights from the Monte-Carlo simulation, which are 

depicted with black bars in the second chart of Figure 4.7, are always larger compared to the 

weights of our approach (number of analysts’ forecasts) when comparing their absolute val-

ues.  
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Figure 4.7: Standard Deviations of :  with Different Approaches and Resulting Optimal Portfolio 

Weights 

 
Figure 4.8: Overview of Portfolio Weights Resulting From the Different BL-Approaches  

 

Furthermore, in Figure 4.8 the resulting portfolio weights of all introduced BL-approaches for 

the first 20 of 64 shares on 12/01/2007 are presented. For the purpose of a clearly represented 

illustration only 20 in place of 30 shares are displayed. In absolute values, the weights of the 
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pure dividend discount model (white bars) are the highest except for few values. Moreover, 

the weights of the He-Litterman approach are closer to the weights of the dividend discount 

model compared to the weights of the historical BL-approach, as expected.  

 

The performance of the four methods for the calculation of BL-returns (number of analysts’ 

forecasts, Monte-Carlo simulation, historical variance-covariance matrix, He-Litterman) is 

compared to several benchmark strategies in the following paragraph.  

 

4.3 Performance of the Selected Approaches 

In a rolling optimization procedure, monthly out-of-sample returns and the resulting perfor-

mances are calculated from 02/01/1997 to 01/01/2008.27 We assume that at a specific time t, 

only the past and current data of times t s, t, with s 0� !!  are known. Based on this infor-

mation, the expected returns for time t and the optimal portfolios and benchmarkportfolios for 

the following nine strategies are determined subsequently: 

1. expected returns of the dividend discount model miP , 

2. BL-returns on the basis of the number of analysts’ forecasts BL,ASP , 

3. BL-returns on the basis of the historical variance-covariance matrix, 

4. BL-returns according to He/Litterman (1999), 

5. BL-returns from the Monte-Carlo simulation BL,MCP , 

6. historical expected returns histP , 

7. portfolio composed according to a Bayesian estimator, 

8. equilibrium expected returns marktP - market portfolio, 

9. equally weighted portfolio ix 1/ N.  

 

The rolling optimization procedure is displayed in Figure 4.9. The expected BL-returns are 

calculated at each point in time t with current information and analysts’ forecasts of time t, as 

mentioned before. Subsequently, the weight vectors are determined with the different ex-

pected returns and the resulting portfolio compositions are kept fixed for one month from t to 

t+1. At time t+1, the actual share returns of this month (period from t to t+1) are multiplied by 

the specified weight vectors to obtain the real portfolio return of every strategy for this month. 

                                                 
27 The first optimization already proceeds on 01/01/1997. The optimized portfolios are kept fixed for one month 
and the first excess return is determined on 02/01/1997. 
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Figure 4.9: Rolling Optimization Procedure for the Measurement of Performance 

 

The riskless interest rate is subtracted from this value, in order to identify the real excess port-

folio return for the period from t to t+1. The resulting return is also known as the out-of-

sample return, as for every optimization only past and current information is used and in the 

next step the performance of the strategies is measured outside the estimation period. We 

choose the Sharpe ratio, Jensen’s alpha, Treynor ratio and the certainty equivalent from (1) to 

compare and assess the different strategies. The performance measures are appropriate for 

several situations according to the intention of portfolio composition.28  

 

The optimizations are accomplished with different restrictions, unconstrained (optimization 1) 

as well as with short sales constraints (optimization 2). However, asset weights greater than 

one are allowed. The portion which is invested in the riskless asset amounts to 

N

0 ii 1
x 1 x

 
 �¦  in both optimizations. A negative 0x  indicates a debt position in the riskless 

interest rate. The results of the unconstrained optimization with 0.21W   and 2O   are pre-

sented in Table 4.1. 

 

 

 

                                                 
28 Cf. Breuer et al. (2004), pp. 374.  
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# strategy Sharpe ratio rank certainty equivalent rank 

1 dividend discount model 0.2135 4 -0.3640 8

2 BL: number of analyst forecasts 0.2615 1 -0.0614 5

3 BL: historical 0.1927 5 0.0120 1

4 BL: He-Litterman 0.2228 2 -0.0096 4

5 BL: Monte Carlo 0.2206 3 -0.3001 7

6 historical   0.1733 6 -1.8707 9

7 Bayes 0.1166 9 -0.0810 6

8 market 0.1267 8 0.0030 3

9 equally weighted 0.1584 7 0.0060 2

# strategy Jensen's alpha rank Treynor ratio rank 

1 dividend discount model 0.1103 2 0.0314 3

2 BL: number of analyst forecasts 0.0827 4 0.0372 2

3 BL: historical 0.0091 7 0.0174 7

4 BL: He-Litterman 0.0376 5 0.0239 5

5 BL: Monte Carlo 0.1032 3 0.0311 4

6 historical   0.2386 1 0.1600 1

7 Bayes 0.0234 6 0.0206 6

8 market 0.0000 9 0.0089 9

9 equally weighted 0.0025 8 0.0122 8

Table 4.1: Performance of the Strategies without Short Sale Restrictions with 0, 21W   and 2O   

 

Three BL-approaches achieve the highest Sharpe ratios. Of these, the approach with the num-

ber of analysts’ forecasts for the determination of the view confidence matrix has the highest 

Sharpe ratio (0.2615) by far. No strategy attains a negative Sharpe ratio, this means that the 

realized portfolio return on average achieves at least the riskless interest rate.29 According to 

the certainty equivalent, a BL-approach outperforms all other strategies too (historical va-

riance-covariance matrix) and the equally weighted portfolio and market portfolio are on 

ranks two and three. If the strategies are arranged on the basis of Jensen’s alpha, the pure his-

torical portfolio outperforms all other strategies and the pure dividend strategy is ranked 

second. Only then the BL-approaches achieve ranks three, four and five. As Jensen’s alpha is 

manipulable (by means of borrowing the alpha could be enhanced), the Treynor ratio is more 

appropriate, as it cannot be influenced by borrowing. According to the Treynor ratio, the port-

folio with historical expected returns attains the greatest risk premium per accepted systematic 

risk. The BL-approach with the number of analysts’ forecasts is again on rank two, above the 

pure dividend approach.   

                                                 
29 The riskless interest rate is represented through the interest rate of government bonds with a maturity of one 
year. The data are available in the internet at http://www.bundesbank.de/statistik/statistik_zeitreihen.-
php?lang=de&open=zinsen&func=list&tr=www_s300_it03a.  
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# strategy 1 2 3 4 5 6 7 8 9 

1 dividend discount model   0 0 0 0 0 20 0 0 

2 BL: number of analyst forecasts     0 0 0 0 5 20 20

3 BL: historical       0 0 0 0 0 0 

4 BL: He-Litterman         0 0 20 20 0 

5 BL: Monte Carlo           0 20 0 0 

6 historical               0 0 0 

7 Bayes               0 0 

8 market                 0 

9 equally weighted                   

Table 4.2: Significance Levels of the Sharpe Ratios According to Memmel With Short Sales and 0, 21W   

and 2O   

 

Table 4.2 shows the levels of significance, on which the Sharpe ratios of the strategies differ, 

according to the test of Memmel (2003). His test rectified the former test of Jobson and Kor-

kie (1981). 5 %, 10 % and 20 % are chosen for the level of significance, as the power of the 

test is weak. The lower triangular matrix is symmetric to the upper one and is thus not pre-

sented. The Sharpe ratios of the BL-approach with the number of analysts’ forecasts and the 

Bayesian portfolio are different on a significance level of 5 %. Furthermore, it is remarkable 

that the statistically different Sharpe ratios primarily appear with the BL-approaches in com-

parison to other portfolio strategies. A significantly different Sharpe ratio also arises between 

the dividend strategy and the Bayesian portfolio. The reason could be that the first five strate-

gies are forward-looking procedures with analysts’ forecast whereas the Bayesian estimator 

relies on historical data. The market portfolio and the equally weighted portfolio (strategies 8 

and 9) are calculated with the current market capitalizations or are determined ad hoc without 

estimations. Hence, these two methods are neither based on past nor future.  

 

  ; wins against : 1 2 3 4 5 6 7 8 9 

1 dividend discount model  -  0 63 0 0 110 110 110 110 

2 BL: number of analyst forecasts 110 -  110 110 110 110 110 110 110 

3 BL: historical 47 0 -  33 37 66 77 77 72 

4 BL: He-Litterman 110 0 77 -  109 110 110 110 110 

5 BL: Monte Carlo 110 0 73 1 -  110 110 110 110 

6 historical   0 0 44 0 0 -  110 110 110 

7 Bayes 0 0 33 0 0 0 -  0 0 

8 market 0 0 33 0 0 0 110 -  0 

9 equally weighted 0 0 38 0 0 0 110 110 -  

Table 4.3: Comparison of the Strategies for all Parameter Constellations - Unconstrained  
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Table 4.1 and Table 4.2 display the performance of the strategies for a specified parameter 

constellation. Of course, with modified parameter constellations the results could be different. 

For this reason, we analyze several parameter constellations for the risk aversion parameter O  

and the input parameter for the BL model W . We apply common risk aversions from 0.5 to 3.5 

in steps of 0.3 (11 values) and in order to establish small values for W , we choose W  from 0.01 

to 0.46 in steps of 0.05 (10 values). Thereby 110 parameter constellations result. Table 4.3 

contains direct comparisons of how many times strategy A wins against strategy B for all 

possible 110 parameter constellations. The table has to be read the following way: the strategy 

of a certain row wins against the strategy in a certain column in x out of 110 parameter con-

stellations. Thus the BL-approach with the number of analysts’ forecasts wins in all parameter 

constellations against all other strategies. The BL-approach according to He-Litterman is the 

second best approach, as it wins in more than half of the constellations against other strategies 

(except for strategy 2). In at least 77 of 110 parameter constellations, it achieves a better per-

formance than the BL-approach with the historical implementation. The Bayesian portfolio 

performs worst for all parameter constellations. The market portfolio and the equally 

weighted portfolio follow directly. The performances of the nine strategies without short sales 

is presented in Table 4.4. 

# strategy Sharpe ratio rank certainty equivalent rank 

1 dividend discount model 0.1440 7 -0.1307 8

2 BL: number of analyst forecasts 0.1495 5 -0.0334 5

3 BL: historical 0.2071 1 0.0134 1

4 BL: He-Litterman 0.1613 3 -0.0152 4

5 BL: Monte Carlo 0.1469 6 -0.1115 7

6 historical   0.2052 2 -0.2482 9

7 Bayes 0.0354 9 -0.0439 6

8 market 0.1267 8 0.0030 3

9 equally weighted 0.1584 4 0.0060 2

# strategy Jensen's alpha rank Treynor ratio rank 

1 dividend discount model 0.1103 2 0.0314 3

2 BL: number of analyst forecasts 0.0827 4 0.0372 2

3 BL: historical 0.0091 7 0.0174 7

4 BL: He-Litterman 0.0376 5 0.0239 5

5 BL: Monte Carlo 0.1032 3 0.0311 4

6 historical   0.2386 1 0.1600 1

7 Bayes 0.0234 6 0.0206 6

8 market 0.0000 9 0.0089 9

9 equally weighted 0.0025 8 0.0122 8

Table 4.4: Performance of the Strategies With Short Sale Restrictions With 0.21W   and 2O   
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Now, the BL-approach with the historical variance-covariance matrix outperforms all other 

strategies according to the Sharpe ratio and the certainty equivalent. Regarding Jensen’s alpha 

and the Treynor ratio again the pure historical strategy performs best. As can be seen in Table 

4.5 there are not as much significant outperformances according to the Sharpe ratio as without 

short sale constraints. The smaller variance of the portfolio weights with restrictions affects 

the realized portfolio returns and Sharpe ratios, thereby it is more difficult to reach a signifi-

cant outperformance. 

# strategy 1 2 3 4 5 6 7 8 9 

1 dividend discount model   0 0 20 0 0 0 0 0 

2 BL: number of analyst forecasts     0 0 0 0 0 0 0 

3 BL: historical       0 0 0 20 10 0 

4 BL: He-Litterman         0 0 0 0 0 

5 BL: Monte Carlo           0 0 0 0 

6 historical               10 0 0 

7 Bayes               0 0 

8 market                 0 

9 equally weighted                   

Table 4.5: Significances of the Sharpe Ratios According to Memmel Without Short Sales and 0, 21W   

and 2O   

 

Table 4.6 shows comparisons of the strategies for all parameter constellations for the case 

with short sale constraints. The pure historical strategy performs best on average. In 73 of 110 

constellations this strategy attains a higher Sharpe ratio as the historical BL-approach. For 

2O   and 0.21W  , one of the 37 other cases occurs, as the BL-approach outperforms the 

pure historical portfolio (see Table 4.4). All in all, the BL-approach with the historical va-

riance-covariance matrix achieves the second rank and the BL-approach according to He-

Litterman is ranked on position three.  

  ; wins against : 1 2 3 4 5 6 7 8 9 

1 dividend discount model  -  0 0 0 22 0 110 110 0 

2 BL: number of analyst forecasts 110 -  6 1 110 0 110 110 8 

3 BL: historical 110 104 -  104 110 37 110 110 104 

4 BL: He-Litterman 110 109 6 -  110 0 110 110 110 

5 BL: Monte Carlo 88 0 0 0 -  0 110 99 0 

6 historical   110 110 73 110 110 -  110 110 110 

7 Bayes 0 0 0 0 0 0 -  0 0 

8 market 0 0 0 0 11 0 110 -  0 

9 equally weighted 110 102 6 0 110 0 110 110 -  

Table 4.6: Comparison of the Strategies for all Parameter Constellations –Constrained 
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5 Conclusion 

For the application of the Black-Litterman model, own views about the expected returns of 

assets are necessary, in order to deviate from the market weights. If there are no views, the 

procedure does not provide an opportunity to execute active portfolio management. Further-

more, analysts do not forecast in the way which is required for the implementation of the 

Black-Litterman model. In this contribution, the views for the Black-Litterman model are 

generated on the basis of the dividend discount model with the help of analysts’ forecasts. We 

suggested four possibilities to compute expected returns with the Black-Litterman model. 

Two of these methods are described and examined for the first time. The confidence in the 

specified views are determined both on the basis of the number of analysts’ forecasts and by 

applying a Monte-Carlo simulation on the basis of the distribution of analysts’ forecasts. 

Thus, we contribute to the literature on a quantitative forecast model for the application of the 

Black-Litterman approach.  

 

In our empirical examination, expected returns and optimal portfolio weights were calculated 

with real capital market data on the basis of a number of strategies: market portfolio, histori-

cal estimation, BL with number of analysts’ forecasts, BL with Monte-Carlo simulation, BL 

with historical variance-covariance matrix, BL according to He-Litterman, dividend discount 

model, Bayesian estimator, and equally weighted portfolio. The effect of the different me-

thods for the determination of the views on the portfolio weights after the application of the 

Black-Litterman model was analyzed. Finally, an out-of-sample performance analysis over a 

period of 132 months was implemented. This is, to our best knowledge, the first out-of-

sample capital market study of the Black-Litterman model. Our implementation of the Black-

Litterman model based on the number of analysts’ forecasts outperforms all other strategies 

by far regarding the Sharpe ratio, if no constraints are included in the optimization. Within the 

constrained optimization, the Black-Litterman approach with the historical variance-

covariance matrix provides the second best Sharpe ratio and the pure historical approach 

wins. Generally, the several Black-Litterman approaches show the best performances. Thus 

we recommend using the Black-Litterman model and give advice how to implement it.  
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6 Appendix 

To calculate an entry jjZ  of view confidence matrix : , which refers to the conficence in the 

j-th view, the probability for the view specified by the investor is used. It is assumed, for in-

stance, that the investor believes with a probability of 70 % that the difference in expected 

returns between portfolio A and portfolio B lies between 5 % and 7 %. To this end, the 85 % 

quantile30 of the standard normal distribution is determined, as the probability of 70 % is dis-

tributed symmetrically around the expected return and the right boundary of the confidence 

region has the same x-coordinate as the 85 % quantile of the standard normal distribution (see 

Figure 6.1). Hence, the limiting values a and b of the standard normally distributed random 

variable Z with � �P a Z b 70%d d   are obtained.  

The value of the 85 % quantile amounts to 1.036, thereby 

� �P 1.036 Z 1.036 70%d d  . (27) 

The return forecast Pr  of the investor could be formalized in the following way: 

� �PP 0,05 r 0,07 70%.d d   (28) 

 

 

Figure 6.1: Quantiles of the Normal Distribution  

 

This normally distributed random variable has to be linked to the standard normally distri-

buted random variable Z for the determination of the view variance. A standard normally dis-

tributed random variable results from a normally distributed random variable � �P 2
r rr N ,P V�  

with the following transformation: 

� �
P

r

r

r
Z N 0,1 .

�P
 

V
�   (29) 

                                                 
30 The D -quantile identifies the x-coordinate, where the distribution function of the standard normal distribution 
amounts to D . See Poddig et al. (2001), p. 185. 
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Solving (29) for pr  and inserting the resulting term in (28), yields: 

� �r r

r r

r r

r r

P 0,05 Z 0,07 70%

0,05 0,07
P Z 70%

0,01 0,01
P Z 70%.

d �V �P d  

§ ·�P �P
� d d  ¨ ¸V V© ¹

§ ·�
� d d  ¨ ¸V V© ¹

  (30) 

Comparing the last term with (27), the standard deviation of the return forecast follows direct-

ly: 

!

r

r

0,01
1,036 0,00965. � V  

V
  (31) 

To insert the variance on the diagonal of matrix : , the squared term of (31) is calculated.  
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